Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
One of the main causes of climate change and global warming is greenhouse gas emissions. Livestock makes up 15% of the world's greenhouse gases (GHG), whereas maritime shipping accounts for 3%. Cattle can produce about 500 grams of methane a day per cow. This study demonstrates that livestock ships are an extremely high source of methane emissions. This study also offers innovative scientific techniques for lowering methane gas emissions from livestock ships. The MV Gelbray Express Livestock ship is selected to investigate the overall emissions generated by the main engine and the livestock on board. Main engine CO2 emissions and livestock CO2 equivalent emissions are theoretically calculated during 24-hour sailing under engine full load and livestock full capacity. The study revealed that livestock CO2 equivalent emissions account for 43% of the total CO2 emissions emitted by the engine and the livestock. To decrease livestock methane emissions, ZELP (Zero Emissions Livestock Project) has patented a unique catalytic technique for capturing and neutralizing methane generated during enteric fermentation in ruminant animals such as cows. Theoretical results show that using the ZELP mask reduces CO2 equivalent emissions by 58 000 kg per day at a livestock capacity of 4000 cattle onboard the MV Gelbray Express Livestock ship.
Rocznik
Tom
Strony
797--804
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
- Arab Academy for Science, Technology, and Maritime Transport, Alexandria, Egypt
autor
- Arab Academy for Science, Technology, and Maritime Transport, Alexandria, Egypt
autor
- Alexandria University, Alexandria, Egypt
Bibliografia
- 1. A.G. Elkafas, M.M. Elgohary, M.R. Shouman, Numerical analysis of economic and environmental benefits of marine fuel conversion from diesel oil to natural gas for container ships, Environ. Sci. Pollut. Res. 28 (2021) 15210–15222. https://doi.org/10.1007/s11356-020-11639-6.
- 2. Al-Enazi, A., Okonkwo, E. C., Biçer, Y., & Al‐Ansari, T. (2021). A review of cleaner alternative fuels for maritime transportation. Energy Reports, 7, 1962–1985. https://doi.org/10.1016/j.egyr.2021.03.036
- 3. Alqarni, D. S., Lee, C. W., Knowles, G. P., Vogt, C., Marshall, M., Gengenbach, T. R., & Chaffee, A. L. (2021). Ru-zirconia catalyst derived from MIL140C for carbon dioxide conversion to methane. Catalysis Today, 371, 120–133. https://doi.org/10.1016/j.cattod.2020.07.080
- 4. Ammar, N. R., & Seddiek, I. S. (2020). Enhancing energy efficiency for new generations of containerized shipping. Ocean Engineering, 215, 107887. https://doi.org/10.1016/j.oceaneng.2020.107887
- 5. Brouček, J. (2014). Production of Methane Emissions from Ruminant Husbandry: A Review. Journal of Environmental Protection, 05(15), 1482–1493. https://doi.org/10.4236/jep.2014.515141
- 6. Chow, W. L., Chong, S., Lim, J. W., Chan, Y. J., Chong, M. F., Tiong, T. J., Chin, J. K., & Pan, G. T. (2020). Anaerobic Co-Digestion of Wastewater sludge: A review of potential Co-Substrates and operating factors for improved methane yield. Processes, 8(1), 39. https://doi.org/10.3390/pr8010039
- 7. Elmallah, M., Elgohary, M. M., & Shouman, M. R. (2023). The effect of air chamber geometrical design for enhancing the output power of oscillating water column wave energy converter. Marine Technology Society Journal, 57(1), 122–129. https://doi.org/10.4031/mtsj.57.1.14
- 8. Fazlollahi, S., & Maréchal, F. (2013). Multi-objective, multi-period optimization of biomass conversion technologies using evolutionary algorithms and mixed integer linear programming (MILP). Applied Thermal Engineering, 50(2), 1504–1513. https://doi.org/10.1016/j.applthermaleng.2011.11.035
- 9. Fazlollahi, S., Mandel, P., Becker, G., & Maréchal, F. (2012). Methods for multi-objective investment and operating optimization of complex energy systems. Energy, 45(1), 12–22. https://doi.org/10.1016/j.energy.2012.02.046
- 10. Grove, H., & Clouse, M. (2021). Zero net emissions goals: Challenges for boards. Corporate Board: Role, Duties & Composition, 17(2), 54–69. https://doi.org/10.22495/cbv17i2art5
- 11. Huan, T., Fan, H., Lei, W., & Guo-Qiang, Z. (2019). Options and evaluations on propulsion systems of LNG carriers. In IntechOpen eBooks. https://doi.org/10.5772/intechopen.82154
- 12. Hussin, F., & Aroua, M. K. (2020). Recent trends in the development of adsorption technologies for carbon dioxide capture: A brief literature and patent reviews (2014–2018). Journal of Cleaner Production, 253, 119707. https://doi.org/10.1016/j.jclepro.2019.119707
- 13. Hwangbo, S., Lee, I., & Han, J. (2017). Mathematical model to optimize design of integrated utility supply network and future global hydrogen supply network under demand uncertainty. Applied Energy, 195, 257–267. https://doi.org/10.1016/j.apenergy.2017.03.041
- 14. IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, 2021.
- 15. Jeffry, L., Ong, M. Y., Nomanbhay, S., Mofijur, M., Mubashir, M., & Show, P. L. (2021). Greenhouse gases utilization: A review. Fuel, 301, 121017. https://doi.org/10.1016/j.fuel.2021.121017
- 16. Joung, T., Kang, S., Lee, J., & Ahn, J. (2020). The IMO initial strategy for reducing Greenhouse Gas (GHG) emissions, and its follow-up actions towards 2050. Journal of International Maritime Safety, Environmental Affairs, and Shipping, 4(1), 1–7. https://doi.org/10.1080/25725084.2019.1707938
- 17. Króliczewska, B., Pecka-Kiełb, E., & Bujok, J. (2023). Strategies Used to Reduce Methane Emissions from Ruminants: Controversies and Issues. Agriculture, 13(3), 602. https://doi.org/10.3390/agriculture13030602
- 18. Kumari, S., Dahiya, R., Naik, S., Hiloidhari, M., Thakur, I. S., Sharawat, I., & Kumari, N. (2016). Projection of methane emissions from livestock through enteric fermentation: A case study from India. Environmental Development, 20, 31–44. https://doi.org/10.1016/j.envdev.2016.08.001
- 19. Lindstad, E., Lagemann, B., Rialland, A., Gamlem, G. M., & Valland, A. (2021). Reduction of maritime GHG emissions and the potential role of E-fuels. Transportation Research Part D: Transport and Environment, 101, 103075. https://doi.org/10.1016/j.trd.2021.103075
- 20. Liu, D., Guo, X., & Xiao, B. (2019). What causes growth of global greenhouse gas emissions? Evidence from 40 countries. Science of the Total Environment, 661, 750–766. https://doi.org/10.1016/j.scitotenv.2019.01.197.
- 21. Mar, K. A., Unger, C., Walderdorff, L., & Butler, T. (2022). Beyond CO2 equivalence: The impacts of methane on climate, ecosystems, and health. Environmental Science & Policy, 134, 127–136. https://doi.org/10.1016/j.envsci.2022.03.027
- 22. Meinshausen, M., Meinshausen, N., Hare, B., Raper, S. C. B., Frieler, K., Knutti, R., Frame, D. J., & Allen, M. (2009). Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature, 458(7242), 1158–1162. https://doi.org/10.1038/nature08017.
- 23. Mikhaylov, A., Moiseev, N., Алешин, К. А., & Burkhardt, T. (2020). Global climate change and greenhouse effect. Entrepreneurship and Sustainability Issues, 7(4), 2897–2913. https://doi.org/10.9770/jesi.2020.7.4(21.
- 24. Mundra, I., & Lockley, A. (2023). Emergent methane mitigation and removal approaches: A review. Atmospheric Environment: X, 100223. https://doi.org/10.1016/j.aeaoa.2023.100223
- 25. Rehmatulla, N., Calleya, J., & Smith, T. (2017). The implementation of technical energy efficiency and CO2 emission reduction measures in shipping. Ocean Engineering, 139, 184–197. https://doi.org/10.1016/j.oceaneng.2017.04.029
- 26. Reisinger, A., Clark, H., Cowie, A., Emmet‐Booth, J., Fischer, C. G., Herrero, M., Howden, M., & Leahy, S. C. (2021). How necessary and feasible are reductions of methane emissions from livestock to support stringent temperature goals? Philosophical Transactions of the Royal Society A, 379(2210), 20200452. https://doi.org/10.1098/rsta.2020.0452
- 27. Revell, L. E., Stenke, A., Rozanov, E., Ball, W. T., Lossow, S., & Peter, T. (2016). The role of methane in projections of 21st century stratospheric water vapour. Atmospheric Chemistry and Physics, 16(20), 13067–13080. https://doi.org/10.5194/acp-16-13067-2016
- 28. Sangaiah, A. K., Tirkolaee, E. B., Goli, A., & Dehnavi-Arani, S. (2019). Robust optimization and mixed-integer linear programming model for LNG supply chain planning problem. Soft Computing, 24(11), 7885–7905. https://doi.org/10.1007/s00500-019-04010-6
- 29. Santos, V. a. D., Da Silva, P. P., & Serrano, L. (2022). The maritime sector and its problematic decarbonization: A Systematic review of the contribution of alternative fuels. Energies, 15(10), 3571. https://doi.org/10.3390/en15103571
- 30. Serra, P., & Fancello, G. (2020). Towards the IMO’s GHG goals: A critical overview of the perspectives and challenges of the main options for decarbonizing international shipping. Sustainability, 12(8), 3220. https://doi.org/10.3390/su12083220
- 31. Thorpe, A. (2008). Enteric fermentation and ruminant eructation: the role (and control?) of methane in the climate change debate. Climatic Change, 93(3–4), 407–431. https://doi.org/10.1007/s10584-008-9506-x
- 32. Xing, H., Spence, S., & Chen, H. (2020). A comprehensive review on countermeasures for CO2 emissions from ships. Renewable & Sustainable Energy Reviews, 134, 110222. https://doi.org/10.1016/j.rser.2020.110222
Uwagi
1. Pełne imiona podano na stronie internetowej czasopisma w "Authors in other databases."
2. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-456ee6b7-02bf-4bf9-9642-fc50104f7912
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.