PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of externally adding pyrite and electrical current on galvanic leaching of chalcopyrite concentrate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Although the operating properties of GalvanoxTM leaching have been widely studied in the literature, several factors concerning chalcopyrite passivation during the process remain unknown so far. The present work hence aims at investigating the significant effect of externally added pyrite features with a particular focus on its particle size (d80 of 0.52, 20, 45 and 2000 µm) through a series of experiments performed in a 2-L stirred-tank electro-reactor. To this end, the role of pyrite: chalcopyrite ratio (0.49:1, 2:1 and 4:1) and presence of electrical current were examined while the rest of the parameters kept constant (80 °C temperature, 400–500 mV (Ag/AgCl) redox potential, pulp density of 10% (w/v), and stirring rate of 1200 rpm). Plus, kinetic models of the leaching tests were studied based on the diffusion and chemical controlling concepts. It was found that the coarser the pyrite particles, the more favorable the copper extraction from the concentrate due to acceleration of reactions in the cathodic electrode and high mass transfers. However, this was in contradiction with the existing reports in the literature. Moreover, galvanic interactions became intensive in the presence of pyrite meaning extensive chalcopyrite dissolution with significantly reduced passivation. Ultimate copper extraction values of 24.17±1.25%, 55.79±0.91% and 57.26±1.59% were resulted at Py:Cp ratios of 0.49:1 (natural), 2:1 and 4:1, respectively. The results showed that maximum copper recovery of 67.32±2.34% was obtained at an optimum condition of pyrite grain size=2000 µm, Py:Cp=4:1, current application=500 mA, 8 h and 80 °C. Finally, detailed kinetic modeling indicated that the chemical control mechanism was dominant in the early reaction stages (t<3.5 h) concerning the availability of fresh surface for chemical agents; however, the second half of the process (8.0 h>t>3.5 h) was controlled by the diffusion control.
Rocznik
Strony
105--119
Opis fizyczny
Bibliogr. 72 poz., rys., tab., wykr.
Twórcy
autor
  • Mining Engineering Group, Engineering Faculty, Shahid Bahonar University of Kerman, Islamic Republic Blvd., 761175133 Kerman, Iran
  • Independent scholar, Am Apostelhof 7A, 50226 Frechen, North Rhine-Westphalia, Germany
  • School of Resources Engineering, Xi’an University of Architecture and Technology, 710055 Xi’an, China
  • Department of Materials Science, International Center for Science, High Technology & Environmental Sciences, Graduate University of Advanced Technology, 7616913439 Kerman, Iran
  • Research and Development Division, Zagros Mes Sazan (ZMS) Copper Co., 3914139138 Saveh, Iran
Bibliografia
  • AGHELI, S., HASSANZADEH, A., VAZIRI HASSAS, B., HASANZADEH, M., 2018. Effect of pyrite content of feed and configuration of locked particles on rougher flotation of copper in low and high pyritic ore types. International Journal of Mining Science and Technology. 28(2), 167-176.
  • AHMADI, A., 2010. Process design and kinetics modeling of copper electro-bioleaching from sulphide minerals. Ph.D. Thesis, Shahid Bahonar University of Kerman, Faculty of Mining Engineering, Kerman, Iran.
  • AHMADI, A., RANJBAR, M., SCHAFFIE, M., PETERSEN, J., 2012. Kinetic modeling of bioleaching of copper sulfide concentrates in conventional and electrochemically controlled systems, Hydrometallurgy. 127-128, 16-23.
  • AHMADI, A., SCHAFFIE, M., PETERSEN, J., SCHIPPERS, A., RANJBAR, M., 2011. Conventional and electrochemical bioleaching of chalcopyrite concentrates by moderately thermophilic bacteria at high pulp density. Hydrometallurgy. 106(1-2), 84–92.
  • ASTUTI, W., HIRAJIMA, T., SASAKI, K., OKIBE, N., 2015. Kinetics of nickel extraction from Indonesian saprolitic ore by citric acid leaching under atmospheric pressure. Mining, Metallurgy and Exploration. 32, 176-185.
  • BERRY, V. K., MURR, L. E., HISKEY, J. B., 1979. Galvanic interaction between chalcopyrite and pyrite during bacterial leaching of low-grade waste. Hydrometallurgy. 3(4), 309–326.
  • BIEGLER, T., 1977. Reduction kinetics of a chalcopyrite electrode surface. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 85(1), 101–106.
  • BIEGLER, T., CONSTABLE, D.C., 1977. Continuous electrolytic reduction of a chalcopyrite slurry. Journal of Applied Electrochemistry. 7, 175–179.
  • BIEGLER, T., SWIFT, D.A., 1976. The electrolytic reduction of chalcopyrite in acid solution. Journal of Applied Electrochemistry. 6, 229–235.
  • CONNER, B., 2005. Bioleaching and electro bioleaching of sulfide minerals, West Virginia University, Ph.D. Thesis, USA.
  • CARN, S.A., KRUEGER, A., KROTKOV, N., YANG, K. and LEVELT, P., 2007. Sulfur dioxide emissions from Peruvian copper smelters detected by the ozone monitoring instrument. Geophysical Research Letters, 34(9), L09801, 1-5.
  • DEBERNARDI, G., and CARLESI, C., 2013. Chemical-electrochemical approaches to the study passivation of chalcopyrit, Mineral Processing and Extractive Metallurgy Review, 34(1), 10-41.
  • DIXON, D.G., MAYNE, D.D., BAXTER, K.G., 2008. GalvanoxTM-a novel galvanically-assisted atmospheric leaching technology for copper concentrates. Canadian Metallurgical Quarterly, 47(3), 327–336.
  • DIXON, D.G., TSHILOMBO, A.F. 2005. Leaching Process for Copper Concentrates, US Patent, Pub No. US2005/0269208Al.
  • ERDEM, M., YURTEN, 2015. M., Kinetics of Pb and Zn leaching from zinc plant residue by sodium hydroxide. Journal of Mining and Metallurgy B: Metallurgy. 51, 89-95.
  • ESKANLOU, A., CHEGENI, M.H., KHALESI, M.R., ABDOLLAHY, M. and HUANG, Q., 2019. Modeling the bubble loading based on force balance on the particles attached to the bubble. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 582, 123892.
  • ESMAILBAGI, M.R., SCHAFFIE, M., KAMYABI, A., RANJBAR, M., 2018. Microbial assisted galvanic leaching of chalcopyrite concentrate in continuously stirred bioreactors. Hydrometallurgy. 180, 139–143.
  • FUENTES-ACEITUNO, J.C., LAPIDUS, G., DOYLE, F., LEE, J., 2008. A qualitative study on the nature of electroassisted chalcopyrite reduction on different electrode materials. Hydrometallgical Proccess, 6th International Symposium. 671–679.
  • FUENTES-ACEITUNO, J.C., LAPIDUS, G.T., DOYLE, F.M., 2008a. A kinetic study of the electroassisted reduction of chalcopyrite. Hydrometallurgy. 92(1-2), 26–33.
  • GERICKE, M., GOVENDER, Y., PINCHES, A., 2010. Tank bioleaching of low-grade chalcopyrite concentrates using redox control. Hydrometallurgy. 104(3-4), 414–419.
  • GHAHREMANINEZHAD, A., ASSLIN, E., DIXON, D.G., 2010. Electrochemical evaluation of the surface of chalcopyrite during dissolution in sulfuric acid solution. Electrochimica Acta. 55(18), 5041–5056.
  • HAQUE, N., NORGATE, T., 2014. The greenhouse gas footprint of in-situ leaching of uranium, gold and copper in Australia. Journal of Cleaner Production. 84, 382-390.
  • HARVEY, P. I., CRUNDWELL, F. K., 1997. Growth of Thiobacillus ferrooxidans: a novel experimental design for batch growth and bacterial leaching studies. Applied and Environmental Microbiology. 63(7), 2586-2592.
  • HASSANZADEH, A., 2018a. A new statistical view to modeling of particle residence time distribution in full-scale overflow ball mill operating in closed-circuit, Geosystem Engineering, 21(4), 199-209.
  • HASSANZADEH, A., 2018b. A survey on troubleshooting of closed-circuit grinding system. Canadian Metallurgical Quarterly. 57(3), 328-340.
  • HASSANZADEH, A., DUONG, H.H., BROCKMANN, M., 2019a. Assessment of flotation kinetics modeling using information criteria; case studies of elevated-pyritic copper sulfide and high-grade carbonaceous sedimentary apatite ores. Journal of Dispersion Science and Technology. 41(7), 1083-1094.
  • HASSANZADEH, A., AZIZI, A., KOUACHI, S., KARIMI, M., CELIK, M.S. 2019b. Estimation of flotation rate constant and particle-bubble interactions considering key hydrodynamic parameters and their interrelations, Minerals Engineering. 141, 105836.
  • HASSANZADEH, A., SAJJADY, S.A., GHOLAMI, H., ÖZKAN, S.G., 2020. An improvement on selective separation by applying ultrasound to rougher and re-cleaner stages of copper flotation, Minerals, 10(7), 619.
  • HASSANZADEH, A., GHOLAMI, H., ÖZKAN, S.G., NIEDOBA, T., SUROWIAK, A., 2021. Effect of power ultrasound on wettability and collector-less floatability of chalcopyrite, pyrite and quartz, Minerals. 11(1), 48.
  • HASSANZADEH, A., HASANZADEH, M., 2017. Chalcopyrite and pyrite floatabilities in the presence of sodium sulfide and sodium metabisulfite in a high pyritic copper complex ore. Journal of Dispersion Science and Technology. 38(6), 782-788.
  • HASSANZADEH, A., KARAKS, F., 2017. Recovery improvement of coarse particles by stage addition of reagents in industrial copper flotation circuit. Journal of Dispersion Science and Technology. 38(2), 309-316.
  • HASSANZADEH, A., FIROUZI, M., ALBIJANIC, B., CELIK, M.S., 2018. A review on determination of particle–bubble encounter using analytical, experimental and numerical methods, Minerals Engineering. 122, 296-311.
  • HOLMES, P.R., CRUNDWELL, F.K., 1995. Kinetic aspects of galvanic interactions between minerals during dissolution. Hydrometallurgy. 39(1-3), 353–375.
  • KHOSHKHOO, M., DOPSON, M., SHCHUKAREV, A., SANDSTROM, A., 2014. Electrochemical simulation of redox potential development in bioleaching of a pyritic chalcopyrite concentrate. Hydrometallurgy. 144-145, 7-14.
  • KLAUBER, C., 2008. A critical review of the surface chemistry of acidic ferric sulphate dissolution of chalcopyrite with regards to hindered dissolution. International Journal of Mineral Processing. 86(1-4), 1-17.
  • KOLEINI, S.M.J., AGHAZADEH, V., SANDSTROM, Å., 2011. Acidic sulphate leaching of chalcopyrite concentrates in presence of pyrite. Minerals Engineering. 24(5), 381–386.
  • KOLEINI, S.M.J., JAFARIAN, M., ABDOLLAHY, M., AGHAZADEH, V., 2010. Galvanic leaching of chalcopyrite in atmospheric pressure and sulfate media: Kinetic and surface studies. Industrial & Engineering Chemistry Research. 49(13), 5997–6002.
  • LAN, S., ZONDAG, H.A., RINDT, C.C.M., 2015. Shrinking core model for the reaction-diffusion problem in thermochemical heat storage, In 13th International Conference on Energy Storage. Beijing. China.
  • LEVENSPIEL, O., 1999. Chemical Reaction Engineering, 3rd Edition, John Wiley & Sons.
  • LI, J. Y., WANG, T., SUN, Z. H., WU, J. J., SHEN, D. L., YUAN, Q., LI, X. X., CHEN, J., 2018. Treatment of high arsenic content lead copper matte by a pressure oxidative leaching combined with cyclone and vertical electro-deposition method. Separation and Purification Technology. 199, 282-288.
  • LIU, Y., GUO, X., LU, H., GONG, X., 2015. An investigation of the effect of particle size on the flow behavior of pulverized coal. Procedia Engineering. 102, 698-713.
  • LOTFALIAN, M., RANJBAR, M., FAZAELIPOOR, M.H., SCHAFFIE, M., MANAFI, M.Z., 2015. The effect of redox control on the continuous bioleaching of chalcopyrite concentrate. Minerals Engineering. 81(1), 52-57.
  • LU, Z.Y., JEFFREY, M.I., LAWSON, F., 2000. An electrochemical study of the effect of chloride ions on the dissolution of chalcopyrite in acidic solutions. Hydrometallurgy. 56(2), 145–155.
  • MAHEDI, M., CETIN, B., Y. DAYIOGLU, A., 2019. Leaching behavior of aluminum, copper, iron and zinc from cement activated fly ash and slag stabilized soils. Waste Management. 95, 334-355.
  • MARSDEN, J.O., BREWER, R. E., HAZEN, N., Copper concentrate leaching developments by Phelps Dodge Corporation, Hydrometallnrgy 2003-Fifth International Conferencein Honorof Professor Ian Ritchie Volume 2: Electrometallurgy and Environmental Hydrometallnrgy, TMS (The Minerals, Metals & Materials Society), 1429-1446, 2003.
  • MARTINEZ-GOMEZ, V.J., FUENTES-ACEITUNO, J.C. PEREZ-GARIBAY, R., JAE-CHUN, L., 2016. A phenomenological study of the electro-assisted reductive leaching of chalcopyrite. Hydrometallurgy. 164, 54-63.
  • MEHTA, A.P., MURR, L.E., 1983. Fundamental studies of the contribution of galvanic interaction to acid-bacterial leaching of mixed metal sulfides. Hydrometallurgy. 9(3), 235–256.
  • NAKAZAWA, H., FUJISAWA, H., SATO, H., 1998. Effect of activated carbon on the bioleaching of chalcopyrite concentrate. International Journal of Mineral Processing. 55(2), 87-94.
  • NAZARI, G., 2012. Enhancing the kinetics of pyrite catalyzed leaching of chalcopyrite. Ph.D Thesis, The University of British Columbia, The Faculty of Graduate Studies (Materials Engineering), Canada.
  • NAZARI, G., DIXON, D.G., DREISINGER, D.B., 2011. Enhancing the kinetics of chalcopyrite leaching in the GalvanoxTM process. Hydrometallurgy. 105(3-4), 251–258.
  • PETERSEN, J., 2016. Heap leaching as a key technology for recovery of values from low-grade ores–A brief overview. Hydrometallurgy. 165, 206-12.
  • PINCHES, A., MYBURGH, P.J., MERWE, C., 2001. Process for the rapid leaching of chalcopyritein the absence of catalysis. US patent No: 6, 277, 341 B1.
  • RUIZ, M.C., MONTES, K., PADILLA, R., 2015. Galvanic effect of pyrite on chalcopyrite leaching in sulfate-chloride media. Mineral Processing and Extractive Metallurgy Review. 36(1), 65-70.
  • SAFARI, V., ARZPEYMA, G., RASHCHI, F., MOSTOUFI, N., 2009. A shrinking particle—shrinking core model for leaching of a zinc ore containing silica. International Journal of Mineral Processing. 93(1), 79-83.
  • SALEHI, S., NOAPARAST, M., SHAFAIE, S.Z., 2016. Kinetics of chalcopyrite galvanic leaching using sulfate medium at low temperature in the GalvanoxTM process. International Journal of Mining and Geo-Engineering. 50(2), 157–161.
  • SANDSTROM, A., SHCHUKAREV, A., PAUL, J., 2005. XPS characterisation of chalcopyrite chemically and bio-leached at high and low redox potential. Minerals Engineering. 18(5), 505–515.
  • SAUBER, M., DIXON, D., 2011. Electrochemical study of leached chalcopyrite using solid paraffin-based carbon paste electrodes. Hydrometallurgy. 110 (1-4), 1–12.
  • SHI, H., MOHANTY, R., CHAKRAVARTY, S., CABISCOL, R., MORGENEYER, M., ZETZENER, H., OOI, J., KWADE, A., LUDING, S., MAGNANIMO, VANESSA, M., 2018. Effect of particle size and cohesion on powder yielding and flow. KONA Powder and Particle Journal. 35, 226-250.
  • THIRD, K.A., CORD-RUWISCH, R., WATLING, H.R. 2002. Control of the redox potential by oxygen limitation improves bacterial leaching of chalcopyrite. Biotechnology and Bioengineering. 78(4), 433–441.
  • TORO, N., PEREZ, K., SALDANA, M., JELDRES, R., JELDRES, M., CANOVAS, M., 2020. Dissolution of pure chalcopyrite with manganese nodules and waste water. Journal of Materials Research and Technology. 9(1), 798-805.
  • TORRES, D., AYALA, L., JELDRES, R.I., CERECEDO-SAENZ, E., SALINAZ-RODRIGUEZ, E., ROBLES, P., TORO, N., 2020. Leaching chalcopyrite with high MnO2 and chloride concentrations. Metals. 10(1), 107.
  • TSHILOMBO, A. F., 2006. Mechanism and kinetics of chalcopyrite passivation and depassivation during ferric and microbial leaching. Ph.D. Thesis, The University of British Columbia, The Faculty of Applied Science, Department of Materials Engineering. Canada.
  • VAKYLABAD, A.B., A., SCHAFFIE, M., NASERI, A., RANJBAR, M., MANAFI, Z., 2016. Optimization of staged bioleaching of low-grade chalcopyrite ore in the presence and absence of chloride in the irrigating lixiviant: ANFIS simulation. Bioprocess and Biosystems Engineering. 39, 1081-1104.
  • VAKYLABAD, A.B., RANJBAR, M., MANAFI, Z., BAKHTIARI, F., 2011. Tank bioleaching of copper from combined flotation concentrate and smelter dust. International Biodeterioration & Biodegradation. 65 (8), 1208-14.
  • VAKYLABAD, A.B., SCHAFFIE, M., RANJBAR, M., MANAFI, Z., DAREZERESHKI, E., 2012. Bio-processing of copper from combined smelter dust and flotation concentrate: A comparative study on the stirred tank and airlift reactors. Journal of Hazardous Materials. 241, 197-206.
  • VIRAMONTES-GAMBOA, G., PENA-GOMAR, M.M., DIXON, D.G., 2010. Electrochemical hysteresis and bistability in chalcopyrite passivation. Hydrometallurgy. 105 (1-2), 140–147.
  • WANG, J., FARAJI, F., GHAHREMAN, A., 2020. Effect of ultrasound on the oxidative copper leaching from chalcopyrite in acidic ferric sulfate media, Minerals. 10, 633. https://doi.org/10.3390/min10070633
  • WANG, S., 2005. Copper leaching from chalcopyrite concentrates. JOM. 57, 48–51.
  • WARREN, G., WADSWORTH, M.E., EL-RAGHY, S.M., 1982. Anodic behavior of chalcopyrite in sulfuric acid. In: OsseoAsare, K., Miller, J.D. (Eds.),. Proc. III Int. Symp. Hydrometall. AIME, Atlanta, Georg. 261–275.
  • YANG, X.Z., ZHANG, L., 2013. Effects of reagent concentration and particle size on diffusion rate of mixed ores with rare elements. Acta Physica Polonica A. 124, 66-69.
  • ZHANG, W.M., GU, S.F., 2007. Catalytic effect of activated carbon on bioleaching of low-grade primary copper sulflde ores. Transactions of Nonferrous Metals Society of China. 17, 1123-1127.
  • ZHAO, H., WANG, J., GAN, X., HU, M., TAO, L., QIN, W., QIU, G., 2016. Role of pyrite in sulfuric acid leaching of chalcopyrite: An elimination of polysulfide by controlling redox potential. Hydrometallurgy. 164, 159-165.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-456c7f6e-0037-441f-922c-978b657e7dff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.