Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
To improve the transport service of every country at the required level, it is necessary to set up appropriate infrastructure, including railways, and the necessary facilities of satisfactory quality. After the establishment of the Slovak Railways (ŽSR), the condition of the railway infrastructure was judged to be unsatisfactory. This situation urgently required optimisation of track sections, which are included in the trans-European corridors. The basic aim of optimisation of the railway network of ŽSR is to build a highquality, safe and reliable railway, which, due to its excellent quality, will correspond to the standards of advanced European countries and, at the same time, provide interoperability. Due to this, it was necessary to verify the fulfilment of the prescribed quality parameters on the optimised lines, among others, and also bear the capacity of individual structural parts of the sub-ballast layers. To address this aim, this paper deals with optimised corridor no. Va in the Považská Teplá - Žilina section, where the diagnostics of the quality of the sub-ballast layers was conducted. This paper specifically focuses on the evaluation of the determined values of the bearing capacity of the construction layers of the embankments and their foundations as well as the transition areas between the objects of sub-ballast layers and embankments located in the optimised section of the line.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
213--223
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
autor
- University of Žilina, Faculty of Civil Engineering Univerzitná 8215/1, 010 26 Žilina, Slovakia
autor
- University of Žilina, Faculty of Civil Engineering Univerzitná 8215/1, 010 26 Žilina, Slovakia
Bibliografia
- 1. Kubáček, J. & et al. Dejiny železníc na území Slovenska. Second Edition. Košice: OTA, a.s. 2007. 256 p. [In Slovak: History of railways in Slovakia].
- 2. European Agreement on Main International Railway Lines. Geneva: Ministry of Foreign and European Affairs of the Slovak Republic. 2017. Available at:https://www.unece.org/fileadmin/DAM/trans/doc/2017/sc2/ECE-TRANS-63-Rev.3e.pdf.
- 3. Regulation EU No 1315/2013. Union guidelines for the development of the trans-European transport network. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32013R1315.
- 4. Železničná trať Bratislava – Žilina. Wikiwand. [In Slovak: Railway line Bratislava – Žilina]. Available at: https://www.wikiwand.com/sk/%C5%BDelezni%C4%8Dn%C3%A1_tra%C5%A5_Bratislava_%E2%80%93_%C5%BDilina.
- 5. Loganathan, N. & Balasubramaniam, A.S. & Bergado, D.T. Deformation analysis of embankments. Journal of Geotechnical Engineering. 1993. Vol. 119. No. 8. P. 1185-1206.
- 6. Chengzhong, Y. & Guoxian, H. & Xiaomin, T. Deformation properties analysis of widen high embankment on soft ground. Physical and Numerical Simulation of Geotechnical Engineering. 2013. No. 13. P. 34-38.
- 7. Ling, X. & Li, P. & Zhang, F. & et al. Permanent deformation characteristics of coarse grained subgrade soils under train-induced repeated load. Advances in Materials Science and Engineering. 2017. P. 1-15.
- 8. Drusa, M. & Decký, M. & Marschalko, M. & et al. Navrhovanie a kontrola zemných konštrukcií dopravných stavieb. First Edition. Žilina: EDIS - publishing center of the University of Žilina. 2013. 522 p. [In Slovak: Design and controlling of earth structures of transport constructions].
- 9. Coelho, B. & Hölscher, P. & Priest, J. & et al. An assessment of transition zone performance. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. 2011. Vol. 225. No. 2. P. 129-139.
- 10. Ribeiro, C. A. & Calçada, R. & Delgado, R. Experimental assessment of the dynamic behaviour of the train-track system at a culvert transition zone. Engineering Structures. 2017. Vol. 138. P. 215-228.
- 11. Fortunato, E. & Paixão, A. & Calçada, R. Railway track transition zones: Design, construction, monitoring and numerical modelling. International Journal of Railway Technology. 2013. Vol. 2. No. 4. P. 33-58.
- 12. Paixão, A. & Fortunato, E. & Calçada, R. Transition zones to railway brigdes: Track measurements and numerical modelling. Engineering Structures. 2014. Vol. 80. P. 435-443.
- 13. Momoya, Y. & Takahashi, T. & Nakamura, T. A study on the deformation characteristics of ballasted track at structural transition zone by multi-actuator moving loading test apparatus. Transportation Geotechnics. 2016. Vol. 6. P. 123-134.
- 14. Sañudo, R. & dell’Olio, L. & Casado, J. A. & et al. Track transitions in railways: A review. Construction and Building Materials. 2016. Vol. 112. P. 140-157.
- 15. TNŽ 73 6312: 2005. Navrhovanie konštrukčných vrstiev podvalového podložia. Bratislava: Generálne riaditeľstvo železníc Slovenskej republiky. 54 p. [In Slovak: The design of structural layers of subgrade structures. Bratislava: Directorate General of Railways of the Slovak Republic].
- 16. Ižvolt, L. & Dobeš, P. Analysis of measuring the deformation resistance of the subgrade surfac of a modernised line Považská Teplá - Žilina. Civil and Environmental Engineering. 2020. Vol. 16. No. 1. P. 210-218.
- 17. Ižvolt, L. & Hodas, S. & Šestáková, J. Železničné staviteľstvo 1. First Edition. Žilina: EDIS -publishing center of the University of Žilina. 2015. 561 p. [In Slovak: Railway Engineering 1].
- 18. Technické správy modernizácie železničnej trate Považská Teplá – Žilina. [In Slovak: Technical reports of railway line Považská Teplá – Žilina modernisation].
- 19. TS4: 2018. Železničný spodok. Príloha 6. Bratislava: Generálne riaditeľstvo železníc Slovenskej republiky. 298 p. [In Slovak: Track substructure. Appendix 6. Bratislava: Directorate General of Railways of the Slovak Republic].
- 20. Krab Light. Commercial railway research (KŽV). Available at: https://kzv.cz/elementor-1624/.
- 21. Šestáková, J. Quality of slab track construction – track alignment design and track geometry. Civil and Environmental Engineering. 2015. Vol. 11. No. 1. P. 2-9.
- 22. Šestáková, J. & Mečár, M.: Evaluation of track design and track geometry of the track with unconventional structure of railway superstructure. In: Procedia Engineering “XXIV R-S-P Seminar, Theoretical Foundation of Civil Engineering”. Samara. 2015. Vol. 111. P. 709-716.
- 23. Shahraki, M. & Witt, K.J. 3D Modeling of transition zone between ballasted and ballastless highspeed railway track. Journal of Traffic and Transportation Engineering. 2015. Vol. 3. P. 234-240.
- 24. Varandas, J.N. & Hölscher, P. & Silva, M.A.G. Dynamic behaviour of railway tracks on transitions zones. Computers and Structures. 2011. Vol. 89. P. 1468-1479.
- 25. Wang, H. & Markine, V.L. Modelling of the long-term behaviour of transition zones: Prediction of track settlement. Engineering Structures. 2018. Vol. 156. P. 294-304.
- 26. Wang, H. & Markine, V.L. & Liu, X. Experimental analysis of railway track settlement in transition zones. Journal of Rail and Rapid Transit. 2018. Vol. 232. No. 6. P. 1774-1789.
- 27. Serdelová, K. & Vičan, J. Analysis and design of steel bridges with ballastless track. In: Procedia Engineering “XXIV R-S-P Seminar, Theoretical Foundation of Civil Engineering”. Samara. 2015. Vol. 111. P. 702-708.
- 28. Plate load test. Geo Eksperts. Available at: https://www.geoeksperts.lv/services/plate-load-test/.
- 29. STN 73 6133: 2017. Stavba ciest. Teleso pozemných komunikácií. Bratislava: Úrad pre normalizáciu, metrológiu a skúšobníctvo Slovenskej republiky. 68 p. [In Slovak: Road Building. Roads embankments and subgrades. Bratislava: Slovak Office of Standards, Metrology and Testing].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-456ac52a-db67-41bb-8a16-b9b6bda369e1