PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermodynamic Phase Diagram and Phonon stability, Electronic and Optical Properties of FeVSb: A DFT study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mechanical, electronic, thermodynamic phase diagram and optical properties of the FeVSb half-Heusler have been studied based on the density functional theory (DFT) framework. Studies have shown that this structure in the MgAgAs-type phase has static and dynamic mechanical stability with high thermodynamic phase consistency. Electronic calculations showed that this compound is a p-type semiconductor with an indirect energy gap of 0.39 eV. This compound’s optical response occurs in the infrared, visible regions, and at higher energies its dielectric sign is negative. The Plasmon oscillations have occurred in 20 eV, and its refraction index shifts to zero in 18 eV.
Twórcy
autor
  • Department of Physics, Hamedan Branch, Islamic Azad University, Hamedan, Iran
autor
  • Department of Physics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
  • Department of Physics, Hamedan Branch, Islamic Azad University, Hamedan, Iran
  • Physics Department, Bu-Ali Sina University, 65174-4161 Hamedan, Iran
Bibliografia
  • [1] A. Yamamoto, T. Takeuchi, The Potential of FeVSb half-Heusler phase for practical thermoelectric material, J. Electron. Mater. 46 (5), 3200-3206 (2017). DOI: https://doi.org/10.1007/s11664-016-4804-y
  • [2] L. Jodin, J. Tobola, P. Pecheur, H. Scherrer, S. Kaprzyk, Effect of substitutions and defects in half-Heusler FeVSb studied by electron transport measurements and KKR-CPA electronic structure calculations, Phy. Rev. B. 70 (18), 184207 (2004). DOI: https://doi.org/10.1103/PhysRevB.70.184207
  • [3] B. Kong, B. Zhu, Y. Cheng, L. Zhang, Q.X. Zeng, X. W. Sun, Structural, mechanical, thermodynamics properties and phase transition of FeVSb, Phys. B: Condens. Matter. 406 (15-16), 3003-3010 (2011). DOI: https://doi.org/10.1016/j.physb.2011.04.067
  • [4] M. Zou, J.F. Li, P. Guo, T. Kita, Synthesis and thermoelectric properties of fine-grained FeVSb system half-Heusler compound polycrystals with high phase purity, J. Phys. D. 43 (41), 415403 (2010). DOI: https://doi.org/10.1088/0022-3727/43/41/415403
  • [5] C. Uher, J. Yang, S. Hu, D.T. Morelli, G.P. Meisner, Transport properties of pure and doped MNiSn (M=Zr, Hf), Phys. Rev. B. 59 (13), 8615 (1999). DOI: https://doi.org/10.1103/PhysRevB.59.8615
  • [6] S. Sakurada, N. Shutoh, Effect of Ti substitution on the thermoelectric properties of (Zr, Hf) NiSn half-Heusler compounds, Appl. Phys. Lett. 86 (8), 082105 (2005). DOI: https://doi.org/10.1063/1.1868063
  • [7] P.G. Van Engen, K.H.J. Buschow, R. Jongebreur, M. Erman, PtMnSb, a material with very high magneto‐optical Kerr effect, Appl. Phys. Lett. 42 (2), 202-204 (1983). DOI: https://doi.org/10.1063/1.93849
  • [8] F. Casper, H.C. Kandpal, G.H. Fecher, C. Felser, Electronic and magnetic properties of GdPdSb, J. Phys. D. 40 (10), 3024 (2007). DOI: https://doi.org/10.1088/0022-3727/40/10/002
  • [9] S.Y. Lin, M. Chen, X.B. Yang, Y.J. Zhao, S.C. Wu, C. Felser, B. Yan, Theoretical search for half-Heusler topological insulators, Phys. Rev. B. 91 (9), 094107 (2015). DOI: https://doi.org/10.1103/PhysRevB.91.094107
  • [10] X. Zhang, et al. NMR evidence for the topologically nontrivial nature in a family of half-Heusler compounds, Sci. Rep. 6, 23172 (2016). DOI: https://doi.org/10.1038/srep23172
  • [11] R. Pöttgen, D. Johrendt, Equiatomic intermetallic europium compounds: syntheses, crystal chemistry, chemical bonding, and physical properties, Chem. Mater. 12 (4), 875-897 (2000). DOI: https://doi.org/10.1021/cm991183v
  • [12] S. Gupta, K.G. Suresh, Review on magnetic and related properties of RTX compounds, J. Alloys Compd. 618, 562-606 (2015). DOI: https://doi.org/10.1016/j.jallcom.2014.08.079
  • [13] C. Fu, H. Xie, Y. Liu, T.J. Zhu, J. Xie, X.B. Zhao, Thermoelectric properties of FeVSb half-Heusler compounds by levitation melting and spark plasma sintering, Intermetallics 32, 39-43 (2013). DOI: https://doi.org/10.1016/j.intermet.2012.07.037
  • [14] R. Hasan, S.C. Ur, Synthesis of FeVSb 1-x Se x Half-Heusler Alloys via Mechanical Alloying and Evaluation of Transport and Thermoelectric Properties, J. Electron. Mater. 49, 2719-2725 (2020). DOI: https://doi.org/10.1007/s11664-019-07653-1
  • [15] A. El-Khouly, A. Novitskii, A.M. Adam, A. Sedegov, A. Kalugina, D. Pankratova, D. Karpenkov, V. Khovaylo, Transport and thermoelectric properties of Hf-doped FeVSb half-Heusler alloys, 820, 153413 (2020). DOI: https://doi.org/10.1016/j.jallcom.2019.153413
  • [16] J. Yang, H. Li, T. Wu, W. Zhang, L. Chen, J. Yang, Evaluation of half‐Heusler compounds as thermoelectric materials based on the calculated electrical transport properties, Adv. Funct. Mater. 18 (19), 2880-2888 (2008). DOI: https://doi.org/10.1002/adfm.200701369
  • [17] D.P. Young, P. Khalifah, R.J. Cava, A.P. Ramirez, Thermoelectric properties of pure and doped FeMSb (M=V, Nb), J. Appl. Phys. 87 (1), 317-321 (2000). DOI: https://doi.org/10.1063/1.371863
  • [18] Y. Stadnyk, et al., Crystal structure, electrical transport properties and electronic structure of the VFe1-xCuxSb solid solution, J. Alloys Compd. 402 (1-2), 30-35 (2005). DOI: https://doi.org/10.1016/j.jallcom.2005.04.186
  • [19] A. El-Khouly, et al., Transport and thermoelectric properties of Hf-doped FeVSb half-Heusler alloys, J. Alloys Compd. 820, 153413 (2020).
  • [20] Ş. Ţălu, et al., Microstructure and Tribological Properties of FeNPs@a-C:H Films by Micromorphology Analysis and Fractal Geometry, Ind. Eng. Chem. Res. 54 (33), 8212-8218 (2015). DOI: https://doi.org/10.1021/acs.iecr.5b02449
  • [21] M. Zare, et al., Evolution of rough-surface geometry and crystalline structures of aligned TiO2 nanotubes for photoelectrochemical water splitting, Scientific Reports 8, 10870 (2018). DOI: https://doi.org/10.1038/s41598-018-29247-3
  • [22] A. Boochani, et al., Novel Graphene-like Co2VAl (111): Case Study on Magnetoelectronic and Optical Properties by First Principles Calculations, J. Phys. Chem. C. 121 (7), 3978-3986 (2017). DOI: https://doi.org/10.1021/acs.jpcc.6b10572
  • [23] A. Achour, M. Islam, S. Solaymani, S. Vizireanu, K. Saeed, G. Dinescu, Influence of plasma functionalization treatment and gold nanoparticles on surface chemistry and wettability of reactive-sputtered TiO2 thin films, Appl. Surf. Sci. 458, 678-685 (2018). DOI: https://doi.org/10.1016/j.apsusc.2018.07.145
  • [24] K. Schwarz, P. Blaha, G.K.H. Madsen, Electronic structure calculations of solids using the WIEN2k package for material sciences, Comput. Phys. Commun. 147 (1-2), 71-76 (2002). DOI: https://doi.org/10.1016/S0010-4655(02)00206-0
  • [25] J.P. Perdew, et al., Restoring the density-gradient expansion for exchange in solids and surfaces, Phys. Rev. Lett. 100 (13), 136406 (2008). DOI: https://doi.org/10.1103/PhysRevLett.100.136406
  • [26] D. Alfè, PHON: A program to calculate phonons using the small displacement method, Comput. Phys. Commun. 180 (12), 2622-2633 (2009). DOI: https://doi.org/10.1016/j.cpc.2009.03.010
  • [27] S.R. Maalouf, S.S.Vel, Nonlinear elastic analysis of 2D materials of arbitrary symmetries with application to black phosphorus, Mech. Mater. 165, 104159 (2022). DOI: https://doi.org/10.1016/j.mechmat.2021.104159
  • [28] T. Fang, X. Zhao, T. Zhu, Band structures and transport properties of high-performance Half-Heusler thermoelectric materials by first principles, Materials 11 (5), 847 (2018). https://doi.org/10.3390/ma11050847
  • [29] G.S. Neumann, L. Stixrude, R E. Cohen, First-principles elastic constants for the hcp transition metals Fe, Co, and Re at high pressure, Phys. Rev. B 69, 219903 (2004). DOI: https://doi.org/10.1103/PhysRevB.69.219903
  • [30] S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Lond. Edinb. Dublin Philos. Mag. J. Sci. 45 (367), 823-843 (1954). DOI: https://doi.org/10.1080/14786440808520496
  • [31] Y. Tian, B. Xu, Z. Zhao, Microscopic theory of hardness and design of novel superhard crystals, IJRMHM. 33, 93-106 (2012). DOI: https://doi.org/10.1016/j.ijrmhm.2012.02.021
  • [32] M.E. Fine, L.D. Brown, H.L. Marcus, Elastic constants versus melting temperature in metals, Scripta Metallurgica 18 (9), 951-956 (1984). DOI: https://doi.org/10.1016/0036-9748(84)90267-9
  • [33] Z.Q. Lv, Z.F. Zhang, Q. Zhang, Z.H. Wang, S.H. Sun, W.T. Fu, Structural, electronic and elastic properties of the Laves phases WFe2, MoFe2, WCr2 and MoCr2 from first-principles, Solid State Sci. 56, 16-22 (2016). DOI: https://doi.org/10.1016/j.solidstatesciences.2016.03.012
  • [34] H. Shi, W. Ming, D.S. Parker, M.H. Du, D.J. Singh, Prospective high thermoelectric performance of the heavily p-doped half-Heusler compound CoVSn, Phys. Rev. B, 95 (19), 195207 (2017). DOI: https://doi.org/10.1103/PhysRevB.95.195207
  • [35] Y. Wang, J. Cheng, M. Behtash, W. Tang, J. Luo, K. Yang, First-principles studies of polar perovskite KTaO 3 surfaces: structural reconstruction, charge compensation, and stability diagram, Phys. Chem. Chem. Phys. 20 (27), 18515-18527 (2018). DOI: https://doi.org/10.1039/C8CP02540A
  • [36] Y. Jiang, Y. Shi, X. Xiang, J. Qi, Y. Han, Z. Liao, T. Lu, Thermodynamic Stabilities of Perfect and Vacancy-Defected Li2TiO3(001) Surfaces From First-Principles Analyses, Phys. Rev. App. 11 (5), 054088 (2019). DOI: https://doi.org/10.1103/PhysRevApplied.11.054088
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-45698099-8203-4cae-8364-18db197dd407
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.