Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this article we study 3-stage Clos networks with multicast calls in general and 2-cast calls, in particular. We investigate various sizes of input and output switches and discuss some routing problems involved in blocking states. To express our results in a formal way we introduce a model of hypergraph edge-coloring. A new class of bipartite hypergraphs corresponding to Clos networks is studied. We identify some polynomially solvable instances as well as a number of NP-complete cases. Our results warn of possible troubles arising in the control of Clos networks even if they are composed of small-size switches in outer stages. This is in sharp contrast to classical unicast Clos networks for which all the control problems are polynomially solvable.
Rocznik
Tom
Strony
739--744
Opis fizyczny
Bibliogr. 14 poz., rys., tab.
Twórcy
autor
- Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, 11/12 Gabiela Narutowicza St., 80-233 Gdańsk, Poland
autor
- Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, 11/12 Gabiela Narutowicza St., 80-233 Gdańsk, Poland
autor
- Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, 11/12 Gabiela Narutowicza St., 80-233 Gdańsk, Poland
Bibliografia
- [1] C. Clos, “A study of nonblocking switching networks”, Bell Syst. Tech. J. 32, 406–424 (1953).
- [2] F.K. Hwang, The Mathematical Theory of Nonblocking Switching Networks, World Scientific, London, 2004.
- [3] F.K. Hwang, “A unifying approach to determine the necessary and sufficient conditions for nonblocking multicast 3-stage Clos networks”, IEEE Trans. on Commun. 53, 1581–1586 (2005).
- [4] A. Jastrzębski and M. Kubale, “Rearrangeability in multicast Clos networks is NP-complete”, Proc. 2-nd Int. Conf. on Information Technology 1, 183–185 (2010).
- [5] F.K. Hwang and C.H. Lin, “Broadcasting in a three-stage point-to-point nonblocking network”, Int. J. Rel. Qual. Safety Eng. 2, 299–307 (1995).
- [6] D.Z. Du and H.Q. Ngo, “An extension of DHH-Erdos conjecture on cycle-plus-triangle graphs”, Taiwan J. Math. 6, 65–105 (2002).
- [7] F.K. Hwang, S.-C. Liaw, and L.D. Tong, “Strictly nonblocking 3-stage Clos networks with some rearrangeable multicast capability”, IEEE Trans. Commun. 6, 261–267 (2002).
- [8] H.-L. Fu and F.K. Hwang, “On 3-stage clos networks with different nonblocking requirements on two types of calls”, J. Comb. Opt. 9, 263–266 (2005).
- [9] I. Holyer, “The NP-completeness of edge-colouring”, SIAM J. Comput. 10, 718–720 (1981).
- [10] M. Kubale, “Average and worst-case performance of Paull’s algorithms for rearranging three-stage connection networks”, Annales Des Telecommunications 40, 270–276 (1985).
- [11] M.C. Paull, “Reswitching of connection networks”, Bell Syst. Tech. J. 41, 833-855 (1962).
- [12] R. Cole, K. Ost, and S. Schirra, “Edge-coloring bipartite multigraphs in O(E logD) time”, Combinatorica 21, 5–12 (2001).
- [13] R.L. Brooks, “On colouring the nodes of a network”, Proc. Cambridge Philosophical Society, Math. Phys. Sci. 37, 194–197 (1941).
- [14] S. Skulrattanakulchai, “Δ-list vertex coloring in linear time”, LNCS 2368, 240–248 (2002).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-456468ac-2d47-4392-be12-7332470b91b1