PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance evaluation of HEC-HMS model for continuous runoff simulation of Gilgel Gibe watershed, Southwest Ethiopia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hydrological models are widely used for runoff simulation throughout the world. The objective of this study is to check the performance of the HEC-HMS model for continuous runoff simulation of Gilgel Gibe watershed. It includes sensitivity analysis, calibration, and validation. The model calibration was conducted with data from the year 1991 to 2002 and validated for the year 2003 to 2013 period using daily observed stream flow near the outlet of the watershed. To check the consistency of the model, both the calibration and validation periods were divided into two phases. The sensitivity analysis of parameters showed that curve number (CN) and wave travel time (K) were the most sensitive, whereas channel storage coefficient (x) and lag time (tlag) were moderately sensitive. The model performance measured using Nash–Sutcliff Efficiency (NSE), Percentage of Bias (PBIAS), correlation coefficient (R2), root mean square error (RMSE), and Percentage Error in Peak (PEP). The respective values were 0.795, 8.225%, 0.916, 27.105 m3∙s–1 and 7.789% during calibration, and 0.795, 23.015%, 0.916, 29.548 m3∙s–1 and –19.698% during validation. The result indicates that the HEC-HMS model well estimated the daily runoff and peak discharge of Gilgel Gibe watershed. Hence, the model is recommended for continuous runoff simulation of Gilgel Gibe watershed. The study will be helpful for efficient water resources and watershed management for Gilgel Gibe watershed. It can also be used as a reference or an input for any future hydrological investigations in the nearby un-gauged or poorly gauged watershed.
Wydawca
Rocznik
Tom
Strony
85--97
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Jimma University, Faculty of Civil and Environmental Engineering, Institute of Technology, Jimma, Ethiopia
  • Jimma University, Faculty of Civil and Environmental Engineering, Institute of Technology, Jimma, Ethiopia
Bibliografia
  • DERDOUR A., BOUANANI A., BABAHAMED K. 2018. Modelling rainfall-runoff relations using HEC-HMS in a semi-arid region: case study in Ain Sefra Watershed, Ksour Mountains (SW Algeria). Journal of Water and Land Development. Vol. 36 p. 45–55. DOI 10.2478/jwld-2018-0005.
  • DU J., QIAN L., RUI H., ZUO T., ZHENG D., XU Y., XU C.Y. 2012. Assessing the effects of urbanization on annual runoff and flood events using an integrated hydrological modeling system for Qinhuai River basin, China. Journal of Hydrology. Vol. 464–465 p. 127– 139. DOI 10.1016/j.jhydrol.2012.06.057.
  • GUMINDOGA W., RWASOKA D.T., NHAPI I., DUBE T. 2017. Ungauged runoff simulation in Upper Manyame Catchment, Zimbabwe: Application of the HEC-HMS model. Physics and Chemistry of the Earth, Parts A/B/C. Vol. 100 p. 371–382. DOI 10.1016/j. pce.2016.05.002.
  • GYAWALI R., WATKIN S.D.W. 2013. Continuous hydrologic modeling of snow-affected watersheds in the Great Lakes basin using HEC-HMS. Journal of Hydrologic Engineering. Vol. 18. Iss. 1 p. 29–39. DOI 10.1061/(ASCE)HE.1943-5584.0000591.
  • HALWATURA D., NAJIM M.M.M. 2013. Application of the HEC-HMS model for runoff simulation in a tropical catchment. Environmental Modeling and Software. Vol. 46 p. 155–162. DOI 10.1016/ j.envsoft.2013.03.006.
  • HAMDAN A.N.A., ALMUKTAR S., SCHOLZ M. 2021. Rainfall-runoff modeling using the HEC-HMS model for the Al-Adhaim River catchment, northern Iraq. Hydrology. Vol. 8. Iss. 2 p. 58. DOI 10.3390/hydrology8020058.
  • IBRAHIM-BATHIS K., AHMED S.A. 2016. Rainfall-runoff modelling of Doddahalla watershed – an application of HEC-HMS and SCN-CN in ungauged agricultural watershed. Arabian Journal of Geosciences. Vol. 9. Iss. 3. p. 170. DOI 10.1007/S12517-015--2228-2.
  • KHANIYA B., WANNIARACHCHI S., RATHNAYAKE U. 2017. Importance of hydrologic simulation for LIDs and BMPs design using HEC-HMS: A case demonstration. International Journal of Hydrology. Vol. 1. Iss. 5 p. 138–146. DOI 10.15406/ijh.2017.01.00027.
  • KUMARASAMY K., BELMONT P. 2018. Calibration parameter selection and watershed hydrology model evaluation in time and frequency domains. Water. Vol. 10. Iss. 6 p. 710. DOI 10.3390/w10060710.
  • LAOUACHERIA F., MANSOURI R. 2015. Comparison of WBNM and HEC-HMS for runoff hydrograph prediction in a small urban catchment. Water Resources Management. Vol. 29. Iss. 8 p. 2485–2501. DOI 10.1007/s11269-015-0953-7.
  • MAJIDI K. 2012.Simulation of rainfall-runoff process using Green-Ampt Method and HEC-HMS Model. International Journal of Hydraulic Engineering. Vol. 1. Iss. 1 p. 5–9. DOI 10.5923/j. ijhe.20120101.02.
  • MCCOLL C., AGGETT G. 2007. Land-use forecasting and hydrologic model integration for improved land-use decision support. Journal of Environmental Management. Vol. 84. Iss. 4 p. 494– 512. DOI 10.1016/j.jenvman.2006.06.023.
  • MERESA H. 2019. Modelling of river flow in ungauged catchment using remote sensing data: application of the empirical (SCS-CN), Artificial Neural Network (ANN) and Hydrological Model (HEC-HMS). Modeling Earth System and Environment. Vol. 5 p. 257–273. DOI 10.1007/s40808-018-0532-z.
  • MISHRA S.K., SINGH V.P. 2013. Soil conservation service curve number (SCS-CN) methodology. Springer Science & Business Media. Vol. 42. Iss. 5 p. 84–146. DOI 10.1007/978-94-017-0147-1_2.
  • MORIASI D. N., ARNOLD J.G., VAN LIEW M W., BINGNER R.L., HARMEL R. D., VEITH T.L. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE. Vol. 50. Iss. 3 p. 885–900. DOI 10.13031/ 2013.23153.
  • PECHLIVANIDIS I.G., JACKSON B.M., MCINTYRE N.R., WHEATER H.S. 2011. Catchment scale hydrological modelling: A review of model types, calibration approaches and uncertainty analysis methods in the context of recent developments in technology and applications. Global NEST Journal. Vol. 13. Iss. 3 p. 193–214. DOI 10.30955/gnj.000778.
  • RAES D., WILLEMS P., GBAGUIDI F. 2006. RAINBOW – A software package for hydrometeorological frequency analysis and testing the homogeneity of historical data sets. In: Proceedings of the 4th International Workshop on Sustainable Management of Marginal Drylands. Islamabad, Pakistan 27–31 January 2006. Vol. 2731 p. 12
  • RAHMAN K.U., BALKHAIR K.S., ALMAZROUI M., MASOOD A. 2017. Sub-catchments flow losses computation using Muskingum-Cunge routing method and HEC-HMS GIS based techniques, case study of Wadi Al-Lith, Saudi Arabia. Modeling Earth System and Environment. Vol. 3. Iss. 4 p. 4. DOI 10.1007/s40808-017--0268-1.
  • RAMLY S., TAHIR W. 2015. Application of HEC-GeoHMS and HEC-HMS as rainfall–runoff model for flood simulation. In: Proceedings of International symposium on Flood Research and Management. Eds. W. Tahir, P. Abu Bakar, M. Wahid, S. Mohd Nasir, W. Lee. Springer, Singapore p. 181–192. DOI 10.1007/ 978-981-10-0500-8_15.
  • ROY D., BEGAM S., GHOSH S., JANA S. 2013. Calibration and validation of HEC-HMS model for a river basin in Eastern India [online]. ARPN Journal of Engineering and Applied Sciences. Vol. 8. Iss. 1 p. 40–56. [Access 27.03.2020]. Available at: http://www.arpnjournals.com/jeas/research_papers/rp_2013/ jeas_0113_847.pdf
  • SCOTT H.D., HOFER K.R. 1995. Spatial and temporal analyses of the morphological and land use characteristics of the Buffalo River watershed [online]. University of Arkansas, Fayetteville Arkansas Water Resources Center P. 61 [Access 20. 05.2019]. Available at: https://core.ac.uk/download/pdf/127621942.pdf
  • SINTAYEHU L.G. 2015. Application of the HEC-HMS model for runoff simulation of upper Blue Nile River Basin. Hydrology: Current Research. Vol. 6. Iss. 2 p. 1–8. DOI 10.4172/2157-7587.1000199.
  • SKHAKHFA I.D., OUERDACHI L. 2016. Hydrological modelling of wadi Ressoul watershed, Algeria, by HEC-HMS model. Journal of Water and Land Development. No. 31 p. 139–147. DOI 10.1515/ jwld-2016-0045.
  • SONG X.M., KONG F. Z., ZHU Z.X. 2011. Application of Muskingum routing method with variable parameters in ungauged basin. Water Science and Engineering. Vol. 4. Iss. 1 p. 1–12. DOI 10.3882/j.issn.1674-2370.2011.01.001.
  • TASSEW B.G., BELETE M.A., MIEGEL K. 2019. Application of HEC-HMS Model for flow simulation in the Lake Tana Basin: The case of Gilgel Abay Catchment, Upper Blue Nile Basin, Ethiopia. Hydrology. Vol. 6. Iss. 1 p. 21. DOI 10.3390/hydrology 6010021.
  • TEKLU N., TALEMA A., MOGESSIE E. 2016. Proceeding of The Second National Consultative Workshop on Integrated Watershed Management on Omo-Gibe Basin. Ethiopia [online]. [Access 17.05.2019]. Available at: https://www.researchgate.net/publication/313428353_Proceeding_of_The_Second_National _Consultative_Workshop_on_Integrated_Watershed_Management_of_Omo-Gibe_Basin
  • USACE 2010. Hydrologic modeling system (HEC-HMS). User’s manual. Ver. 3.5 [online]. Davis, Calif. US Army Corps of Engineers, Hydrologic Engineering Center. [Access 23.02. 2019]. Available at: https://www.hec.usace.army.mil/software/hec-hms/ documentation/HEC-HMS_Users_Manual_3.5.pdf
  • VERMA A.K., JHA M.K., MAHANA R.K. 2010. Evaluation of HEC-HMS and WEPP for simulating watershed runoff using remote sensing and geographical information system. Paddy Water and Environment. Vol. 8. Iss. 2 p. 131–144. DOI 10.1007/s10333-009--0192-8.
  • WAŁĘGA A. 2013. Application of HEC-HMS programme for the reconstruction of a flood event in an un controlled basin [online]. Journal of Water and Land Development. Vol. 18 p. 13–20. [Access 04.05.2021] Available at: https://www.itp.edu.pl/JWLD/ files/Walega_8hzpck8j.pdf.
  • YENER M.K., SORMAN A.U., SORMAN A.A., SENSOY A., GEZGIN T. 2007. Modeling studies with HEC-HMS and runoff scenarios in Yuvacik Basin, Turkiye. International Congress on River Basin Management. Vol. 4 p. 621–634.
  • ZELELEW D.G., MELESSE A.M. 2018. Applicability of a spatially semi-distributed hydrological model for watershed scale runoff estimation in Northwest Ethiopia. Water. Vol. 10. Iss. 7. p. 923. DOI 10.3390/w10070923.
  • ZHANG H.L., WANG Y.J., WANG Y.Q., LI D.X., WANG X.K. 2013. The effect of watershed scale on HEC-HMS calibrated parameters: A case study in the Clear Creek watershed in Iowa, US. Hydrology and Earth System Sciences. Vol. 17. Iss. 7 p. 2735– 2745. DOI 10.5194/hess-17-2735-2013.
  • ZOU K.H., TUNCALI K., SILVERMAN S.G. 2003. Correlation and simple linear regression. Radiology. Vol. 227. Iss. 3. p. 617–628. DOI 10.1148/radiol.2273011499.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4561cf75-b50e-4967-bac3-6e0d1ff16ead
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.