PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison theorems for oscillation and non-oscillation of perturbed Euler type equations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to present two comparison theorems. These results enable to describe the oscillation behavior of second order Euler type half-linear differential equations with perturbations in both terms using previously obtained oscillation and non-oscillation criteria. We point out that the comparison theorems are easy to use. This fact is also illustrated by a simple example. In addition, the number of perturbations is arbitrary and the last perturbations can be given by very general continuous functions. Note that the presented results are new even in the case of linear equations.
Rocznik
Strony
785--806
Opis fizyczny
Bibliogr. 62 poz.
Twórcy
autor
  • Masaryk University, Faculty of Science, Department of Mathematics and Statistics, Kotlářská 2, CZ-611 37 Brno, Czech Republic
  • Masaryk University, Faculty of Science, Department of Mathematics and Statistics, Kotlářská 2, CZ-611 37 Brno, Czech Republic
  • Masaryk University, Faculty of Science, Department of Mathematics and Statistics, Kotlářská 2, CZ-611 37 Brno, Czech Republic
Bibliografia
  • [1] R.P. Agarwal, S.R. Grace, D. O’Regan, Oscillation Theory for Second Order Linear, Half-Linear, Superlinear and Sublinear Dynamic Equations, Kluwer Academic Publishers, Dordrecht, 2002.
  • [2] Z. Došlá, P. Hasil, S. Matucci, M. Veselý, Euler type linear and half-linear differential equations and their non-oscillation in the critical oscillation case, J. Ineq. Appl. 2019 (2019), no. 189, 1–30.
  • [3] O. Došlý, Half-linear Euler differential equation and its perturbations, Electron. J. Qual. Theory Differ. Equ., Proc. 10th Coll. Qual. Theory Diff. Equ. 2016 (2016), no. 10, 1–14.
  • [4] O. Došlý, Solutions of Riemann–Weber type half-linear differential equation, Arch. Math. 53 (2017), no. 1, 49–61.
  • [5] O. Došlý, S. Fišnarová, Half-linear oscillation criteria: Perturbation in term involving derivative, Nonlinear Anal. 73 (2010), 3756–3766.
  • [6] O. Došlý, S. Fišnarová, Linearized Riccati technique and (non-)oscillation criteria for half-linear difference equations, Adv. Differ. Equ. 2008 (2008), 438130.
  • [7] O. Došlý, H. Funková, Euler type half-linear differential equation with periodic coefficients, Abstract Appl. Anal. 2013 (2013), 714263.
  • [8] O. Došlý, H. Funková, Perturbations of half-linear Euler differential equation and transformations of modified Riccati equation, Abstract Appl. Anal. 2012 (2012), 738472.
  • [9] O. Došlý, H. Haladová, Half-linear Euler differential equations in the critical case, Tatra Mt. Math. Publ. 48 (2011), 41–49.
  • [10] O. Došlý, P. Hasil, Critical oscillation constant for half-linear differential equations with periodic coefficients, Ann. Mat. Pura Appl. 190 (2011), no. 3, 395–408.
  • [11] O. Došlý, P. Řehák, Half-Linear Differential Equations, Elsevier, Amsterdam, 2005.
  • [12] O. Došlý, M. Veselý, Oscillation and non-oscillation of Euler type half-linear differential equations, J. Math. Anal. Appl. 429 (2015), no. 1, 602–621.
  • [13] O. Došlý, J. Jaroš, M. Veselý, Generalized Prüfer angle and oscillation of half-linear differential equations, Appl. Math. Lett. 64 (2017), no. 2, 34–41.
  • [14] Á. Elbert, Asymptotic behaviour of autonomous half-linear differential systems on the plane, Studia Sci. Math. Hungar. 19 (1984), no. 2–4, 447–464.
  • [15] Á. Elbert, A. Schneider, Perturbations of half-linear Euler differential equation, Results Math. 37 (2000), no. 1–2, 56–83.
  • [16] L. Erbe, J. Baoguo, A. Peterson, Oscillation and nonoscillation of solutions of second order linear dynamic equations with integrable coefficients on time scales, Appl. Math. Comput. 215 (2009), no. 5, 1868–1885.
  • [17] S. Fišnarová, Z. Pátíková, Hille-Nehari type criteria and conditionally oscillatory half-linear differential equations, Electron. J. Qual. Theory Differ. Equ. 2019 (2019), no. 71, 1–22.
  • [18] S. Fišnarová, Z. Pátíková, Perturbed generalized half-linear Riemann–Weber equation – further oscillation results, Electron. J. Qual. Theory Differ. Equ. 2017 (2017), no. 69, 1–12.
  • [19] K. Fujimoto, P. Hasil, M. Veselý, Riccati transformation and non-oscillation criterion for half-linear difference equations, Bull. Malays. Math. Sci. Soc. 47 (2024), no. 146, 1–19.
  • [20] K. Fujimoto, N. Yamaoka, Oscillation constants for Euler type differential equations involving the p(t)-Laplacian, J. Math. Anal. Appl. 470 (2019), no. 2, 1238–1250.
  • [21] K. Fujimoto, K. Ishibashi, M. Onitsuka, Leighton–Wintner-type oscillation theorem for the discrete p(k)-Laplacian. Appl. Math. Lett. 163 (2025), 109465.
  • [22] F. Gesztesy, M. Ünal, Perturbative oscillation criteria and Hardy-type inequalities, Math. Nachr. 189 (1998), 121–144.
  • [23] P. Hasil, M. Veselý, Non-oscillation of perturbed half-linear differential equations with sums of periodic coefficients, Adv. Differ. Equ. 2015 (2015), no. 190, 1–17.
  • [24] P. Hasil, M. Veselý, Oscillation constants for half-linear difference equations with coefficients having mean values, Adv. Differ. Equ. 2015 (2015), no. 210, 1–18.
  • [25] P. Hasil, M. Veselý, Oscillation and non-oscillation criteria for linear and half-linear difference equations, J. Math. Anal. Appl. 452 (2017), no. 1, 401–428.
  • [26] P. Hasil, M. Veselý, Oscillation and non-oscillation of half-linear differential equations with coefficients determined by functions having mean values, Open Math. 16 (2018), no. 1, 507–521.
  • [27] P. Hasil, M. Veselý, Oscillation and non-oscillation results for solutions of perturbed half-linear equations, Math. Methods Appl. Sci. 41 (2018), no. 9, 3246–3269.
  • [28] P. Hasil, M. Veselý, Oscillatory and non-oscillatory solutions of dynamic equations with bounded coefficients, Electron. J. Diff. Equ. 2018 (2018), no. 24, 1–22.
  • [29] P. Hasil, M. Veselý, Oscillation result for half-linear dynamic equations on timescales and its consequences, Math. Methods Appl. Sci. 42 (2019), no. 6, 1921–1940.
  • [30] P. Hasil, M. Veselý, Oscillation and nonoscillation of perturbed nonlinear equations with p-Laplacian, Math. Nachr. 296 (2023), no. 7, 2809–2837.
  • [31] P. Hasil, J. Vítovec, Conditional oscillation of half-linear Euler-type dynamic equations on time scales, Electron. J. Qual. Theory Differ. Equ. 2015 (2015), no. 6, 1–24.
  • [32] P. Hasil, J. Kisel’ák, M. Pospíšil, M. Veselý, Non-oscillation of half-linear dynamic equations on time scales, Math. Methods Appl. Sci. 44 (2021), no. 11, 8775–8797.
  • [33] P. Hasil, M. Pospíšil, J. Šišoláková, M. Veselý, Non-oscillation criterion for Euler type half-linear difference equations with consequences in linear case, Acta Math. Hung. 166 (2022), no. 2, 624–649.
  • [34] P. Hasil, J. Šišoláková, M. Veselý, Averaging technique and oscillation criterion for linear and half-linear equations, Appl. Math. Lett. 92 (2019), 62–69.
  • [35] A. Hongyo, N. Yamaoka, General solutions for second-order linear difference equations of Euler type, Opuscula Math. 37 (2017), no. 3, 389–402.
  • [36] K. Ishibashi, Hille–Nehari type non-oscillation criteria for half-linear dynamic equations with mixed derivatives on a time scale, Electron. J. Differ. Equ. 2021 (2021), no. 78, 1–15.
  • [37] K. Ishibashi, Nonoscillation criteria for damped half-linear dynamic equations with mixed derivatives on a time scale, J. Math. Anal. Appl. 512 (2022), 126183.
  • [38] J. Jaroš, Comparison techniques for detection of nonoscillation in half-linear differential equations of the second order, Math. Nachr. 298 (2025), no. 6, pp. 2060–2071.
  • [39] J. Jaroš, M. Veselý, Conditional oscillation of Euler type half-linear differential equations with unbounded coefficients, Studia Sci. Math. Hungar. 53 (2016), no. 1, 22–41.
  • [40] A. Kalybay, D. Karatayeva, Oscillation and nonoscillation criteria for a half-linear difference equation of the second order and the extended discrete Hardy inequality, Ukrain. Math. J. 74 (2022), no. 1, 50–68.
  • [41] A. Kalybay, R. Oinarov, Weighted Hardy inequalities with sharp constants, J. Korean Math. Soc. 57 (2020), no. 3, 603–616.
  • [42] A. Misir, B. Mermerkaya, Critical oscillation constant for half linear differential equations which have different periodic coefficients, Gazi Univ. J. Sci. 29 (2016), no. 1, 79–86.
  • [43] A. Misir, B. Mermerkaya, Critical oscillation constant for Euler type half-linear differential equation having multi-different periodic coefficients, Int. J. Differ. Equ. 2017 (2017), 5042421.
  • [44] A. Misir, B. Mermerkaya, Oscillation and nonoscillation of half-linear Euler type differential equations with different periodic coefficients, Open Math. 15 (2017), 548–561.
  • [45] P.B. Naĭman, The set of isolated points of increase of the spectral function pertaining to a limit-constant Jacobi matrix, Izv. Vyssh. Uchebn. Zaved. Mat. 1959 (1959), 129–135.
  • [46] M. Naito, Oscillation criteria for perturbed half-linear differential equations, Electron. J. Qual. Theory Differ. Equ. 2024 (2024), no. 38, 1–18.
  • [47] Z. Pátíková, Nonoscillatory solutions of half-linear Euler-type equation with n terms, Math. Methods Appl. Sci. 43 (2020), no. 13, 7615–7622.
  • [48] Z. Pátíková, Application of de la Vallée Poussin type inequalities to half-linear Euler type equations, Math. Methods Appl. Sci. 48 (2025), no. 8, 9332–9339.
  • [49] P. Řehák, A critical oscillation constant as a variable of time scales for half-linear dynamic equations, Math. Slovaca 60 (2010), no. 2, 237–256.
  • [50] P. Řehák, N. Yamaoka, Oscillation constants for second-order nonlinear dynamic equations of Euler type on time scales, J. Diff. Equ. Appl. 23 (2017), no. 11, 1884–1900.
  • [51] K.M. Schmidt, Oscillation of perturbed Hill equation and lower spectrum of radially periodic Schrödinger operators in the plane, Proc. Amer. Math. Soc. 127 (1999), 2367–2374.
  • [52] K.M. Schmidt, Critical coupling constant and eigenvalue asymptotics of perturbed periodic Sturm–Liouville operators, Commun. Math. Phys. 211 (2000), 465–485.
  • [53] J. Šišoláková, Oscillation of linear and half-linear difference equations via modified Riccati transformation, J. Math. Anal. Appl. 528 (2023), 127526.
  • [54] J. Sugie, K. Kita, Oscillation criteria for second order nonlinear differential equations of Euler type, J. Math. Anal. Appl. 253 (2001), no. 2, 414–439.
  • [55] J. Sugie, K. Matsumura, A nonoscillation theorem for half-linear differential equations with periodic coefficients, Appl. Math. Comput. 199 (2008), no. 2, 447–455.
  • [56] J. Sugie, M. Onitsuka, A non-oscillation theorem for nonlinear differential equations with p-Laplacian, Proc. Roy. Soc. Edinburgh, Sect. A 136 (2006), no. 3, 633–647.
  • [57] J. Sugie, N. Yamaoka, Comparison theorems for oscillation of second-order half-linear differential equations, Acta Math. Hungar. 111 (2006), no. 1–2, 165–179.
  • [58] M. Veselý, P. Hasil, Conditional oscillation of Riemann–Weber half-linear differential equations with asymptotically almost periodic coefficients, Studia Sci. Math. Hungar. 51 (2014), no. 3, 303–321.
  • [59] J. Vítovec, Critical oscillation constant for Euler-type dynamic equations on time scales, Appl. Math. Comput. 243 (2014), 838–848.
  • [60] F. Wu, L. She, K. Ishibashi, Moore-type nonoscillation criteria for half-linear difference equations, Monatsh. Math. 194 (2021), 377–393.
  • [61] N. Yamaoka, Oscillation criteria for second-order nonlinear difference equations of Euler type, Adv. Differ. Equ. 2012 (2012), no. 218, 1–14.
  • [62] N. Yamaoka, Oscillation and nonoscillation criteria for second-order nonlinear difference equations of Euler type, Proc. Amer. Math. Soc. 146 (2018), no. 5, 2069–2081.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4560df05-d999-4282-b842-e6bc2fb7168b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.