PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study of the admixtures effect on concrete creep using Bayesian Linear Regression

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Admixtures are commonly used nowadays in the mix composition of concrete. These additions affect concrete properties and performance especially creep deformations. This paper shows the effect of admixtures on creep of concrete. In fact, creep deformations have prejudicial consequences on concrete behaviour; an incorrect or inaccurate prediction leads to undesirable consequences in structures. Therefore, an accurate estimation of these deformations is mandatory. Moreover, design codes do not consider admixtures’ effect while predicting creep deformations, thus it is necessary to develop models that predict accurately creep deformations and consider the effect of admixtures. Using a large experimental database coming from international laboratories and research centres, this study aims to update the Eurocode 2 creep model by considering the type and percentage of admixtures using Bayesian Linear Regression method. The effect of two types of admixtures is presented in this paper; the water reducer and silica fume.
Rocznik
Strony
127--140
Opis fizyczny
Bibliogr. 19 poz., il., tab.
Twórcy
autor
  • Lebanese Canadian University, Aintoura, Lebanon
autor
  • Saint Joseph University (USJ)
  • Ecole Supérieure d’Ingénieurs de Beyrouth (ESIB), Dekwaneh, Lebanon
Bibliografia
  • 1. B. Ranjith Babu, R. Thenmozhi, “An investigation of the mechanical properties of sintered fly ash lightweight aggregate concrete (SFLWAC) with steel fibers”, Archives of Civil Engineering LXIV(1): 73-85, 2018.
  • 2. M. Collepardi, “Admixtures used to enhance placing characteristics of concrete”, Cement and Concrete Composites 20(2-3): 103-112, 1998.
  • 3. Dr.K.V.S. Gopala Krishna Sastry, A. Ravitheja, Dr.T. Chandra Sekhara Reddy, “Effect of foundry sand and mineral admixtures on mechanical properties of concrete”, Archives of Civil Engineering LXIV(1): 117-131, 2018.
  • 4. L. Su, Y. Wang, S. Mei, P. Li, “Experimental investigation on the fundamental behavior of concrete creep”, Construction and Building Materials 152: 250-258, 2017
  • 5. J. Gong, J. Cao, Y.-F. Wang, “Effects of sulfate attack and dry-wet circulation on creep of fly-ash slag concrete”, Construction and Building Materials 125: 12-20, 2016.
  • 6. Z.P. Bažant, et al., “RILEM draft recommendation: TC-242-MDC multi-decade creep and shrinkage of concrete: material model and structural analysis. Model B4 for creep, drying shrinkage and autogenous shrinkage of normal and high-strength concretes with multi-decade applicability”, Materials and Structures 48: 753-770, 2015. Available at: http://link.springer.com/10.1617/s11527-014-0485-2.
  • 7. M.H. Hubler, R. Wendner, Z.P. Bažant, “Statistical justification of Model B4 for Multi-Decade concrete creep using laboratory and bridge databases and comparisons to other models”, Materials and Structures 48(4): 815-833, 2015.
  • 8. H. Choi, M. Lim, H. Choi, T. Noguchi, R. Kitagaki, “Modelling of creep of concrete mixed with expansive additives”, Magazine of concrete research 67(7): 335-348, 2015.
  • 9. K.C. Hover, „Concrete mixture proportioning with water-reducing admixtures to enhance durability: A quantitative model”, Cement and Concrete Composites 20(2-3): 113-119, 1998.
  • 10. M.H. Hubler, R. Wendner, Z.P. Bažant, “Comprehensive database for concrete creep and shrinkage: analysis and recommendations for testing and recording”, American Concrete Institute Materials Journal 112(4): 547-558, 2015.
  • 11. Eurocode 2: Design of Concrete Structures – Part 1-1: General Rules and Rules for Buildings, European Committee for Standardization, Brussels, Belgium, 2004.
  • 12. Z. Bažant, L. Panula, “Practical prediction of time dependent deformations of concrete”, Matériaux et Construction 11(5): 307-316, 317-328, 415-424, 425-434, 1978.
  • 13. Z. Bažant, G. Li, “Comprehensive Database on concrete creep and shrinkage”, American Concrete Institute Materials Journal 105(6): 635-638, 2008.
  • 14. K. Kim, “Creep-database V1.1” 2010, www.iti.northwestern.edu/publications/bazant/
  • 15. ACI 209.2R-08: Guide for Modelling and Calculating Shrinkage and Creep in Hardened Concrete, American Concrete Institute, Farmington Hills, MI, U.S.A., 2008.
  • 16. G. Box, G. Tiao, Bayesian Inference in Statistical Analysis, Wiley-Interscience Publication, John Wiley and Sons, Inc, Hoboken, NJ, 1992.
  • 17. M. Riddle, R.T. Muehleisen, “A guide to Bayesian calibration of building energy models”, In Building Simulation Conference, Atlanta, GA, 2014.
  • 18. Y. Heo, R. Choudhary, G.A. Augenbroe, “Calibration of building energy models for retrofit analysis under uncertainty”, Energy and Buildings 47: 550-560, 2012.
  • 19. W.M. Bolstad, J.M. Curran, Introduction to Bayesian Statistics, 3rd edition, John Wiley, 2016.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-455bea7b-5e59-4589-b02c-a3843ffdecbc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.