PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biofiltration of Contaminated Air – Current Status, Development Trends

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Biofiltracja zanieczyszczonego powietrza – stan aktualny, trendy rozwojowe
Języki publikacji
EN
Abstrakty
EN
The study presents a description of both the main problems of biofiltration as well as the new research directions. Discussion of the first subject covered the area of biofiltration applied in purification of exhaust gases. The method traditionally used for the purification of waste gases from biological processes is also suitable for the treatment of hot and dry air, contaminated with substances of high toxic concentrations. According to the literature reports, hydrocarbons belonging to all groups: compounds containing oxygen in the molecule such as aldehydes, ketones and esters, compounds containing nitrogen and sulphur in the molecule like amines, thiols or organic sulphides can all be filtered out. Chlorinated hydrocarbons and some inorganic compounds like ammonia and hydrogen sulphide can also be removed. All these substances can be present individually or in multicomponent mixtures. The biofilters have been divided into conventional ones provided with a wet bed and the ones fitted with a biotrickling bed. A set of information on the materials used to compose a bed with a division into natural and synthetic has been given. The division of natural beds has been described as biodegradable, like peat, compost, wood chips and non-biodegradable as volcanic rocks. Among the synthetic beds mention are the ones made of mineral types of expanded clay aggregates and other minerals, as well as synthetic organic plastics, for example polyurethane foams. Factors influencing the biofiltration process, such as gas flow rate, concentration of pollutants, their type and properties, temperature, humidity of gases and sediments, structure a bed, oxygen availability, salinity and pH of the bed, as well as the availability of nutrients not found in treated gases, were presented in the paper. An extensive chapter was devoted to the microorganisms colonizing the bed of biofilter, which are responsible for the decomposition of filtered out pollutants. They can be introduced to the biofilter as microorganisms that naturally inhabit given building material or placed on a bed in the form of a vaccine. A consortium of microorganisms, formed during the start-up of a biofilter (adaptation), composed of bacteria and fungi, undergoes constant changes caused by the influx of new microorganisms along with purified air and the influence of environmental factors. These changes can be both quantitative and qualitative, manifested by the occurrence of genetic mutations. The microorganisms that colonize the bed belong to many species, such as Pseudomonas, Pseudoxanthomonas, Xanthomonadales, Ralstonia, Mycobacterium, Exophiala i Candidia. They metabolize environmental pollutants. This most often takes place during the catabolic process initiated by enzyme-assisted oxygen attack per molecule. As a result, appropriate alcohols are first formed, which than undergo successive transformations to aldehydes, fatty acids and further down to water and CO2. The chapter devoted to additives improving the bioavailability of pollutants such as methanol, silicone oils and surfactants, was included in the paper. New products in the field of construction solutions and hybrid systems were explained. Solutions such as rotary biofilters and cylindrical beds aim to reduce problems with even gas flow and excessive flow resistance. Among the hybrid systems, pre-filter solutions with active carbon and a UV pre-treatment module were presented. The idea of a biofilter combining the removal of pollutants with the generation of electric current in microbial fuel cells is also presented.
PL
W opracowaniu przedstawiono opis zarówno podstawowych zagadnień biofiltracji jak i nowych kierunków badawczych. Omawiając pierwsze z zagadnień zakreślono obszar zastosowań biofiltracji w oczyszczaniu gazów odlotowych. Metoda tradycyjnie przydatna do oczyszczania gazów odlotowych z procesów biologicznych nadaje się również do obróbki powietrza gorącego i suchego oraz zanieczyszczonego substancjami o wysokich toksycznych stężeniach. Zgodnie z doniesieniami literaturowymi odfiltrowywane mogą być węglowodory przynależne do wszystkich grup, związki zawierające tlen w cząsteczce jak aldehydy, ketony i estry, związki zawierające azot i siarkę w cząsteczce jak aminy, tiole czy siarczki organiczne. Usuwane są także chlorowcopochodne węglowodorów oraz niektóre związki nieorganiczne jak amoniak i siarkowodór. Wszystkie wymienione substancje mogą występować pojedynczo oraz w wieloskładnikowych mieszaninach. Podzielono biofiltry na klasyczne zaopatrzone w złoże utrzymywane w stanie wilgotnym oraz te ze złożem przepłukiwanym. Podano zbiór informacji o materiałach wykorzystywanych do komponowania złóż z podziałem na naturalne i syntetyczne. Podział naturalnych uściślono na biodegradowalne jak torf, komposty, zrębki drewna i naturalne nie biodegradowalne jak skały wulkaniczne. Wśród syntetycznych wymieniono mineralne typu poryzowane glinki i inne minerały oraz syntetyczne organiczne jak tworzywa sztuczne, przykładowo pianki poliuretanowe. Zaprezentowano czynniki wpływające na bieg biofiltracji takie jak natężenie przepływu gazów, stężenie zanieczyszczeń, ich rodzaj i właściwości, temperatura, wilgotność gazów i złoża, tekstura złoża, dostępność tlenu, zasolenie i pH złoża, a także dostępność składników pokarmowych nie występujących w oczyszczanych gazach. Obszerny rozdział poświęcono mikroorganizmom zasiedlającym złoża biofiltrów odpowiedzialnym za rozkład odfiltrowywanych zanieczyszczeń. Mogą być one wprowadzane do biofiltra jako mikroorganizmy naturalnie zasiedlające dany materiał budulcowy złoża lub wprowadzane na złoże w formie szczepionki. Uformowane w okresie rozruchu biofiltra (adaptacji) konsorcjum mikroorganizmów złożone z bakterii i grzybów ulega nieustannym zmianom wywoływanym napływem nowych mikroorganizmów wraz z oczyszczanym powietrzem oraz wpływem czynników środowiskowych. Zmiany te mogą mieć charakter zarówno ilościowy jak i jakościowy przejawiający się występowaniem mutacji genetycznych. Mikroorganizmy zasiedlające złoża należą do wielu gatunków takich jak np. Pseudomonas, Pseudoxanthomonas, Xanthomonadales, Ralstonia, Mycobacterium, Exophiala i Candidia. Metabolizują one zanieczyszczenia środowiska. Najczęściej ma to miejsce w procesie katabolicznym zapoczątkowanym wspomaganym enzymami atakiem tlenu na cząsteczkę. W efekcie najpierw powstają odpowiednie alkohole ulegające kolejno zachodzącym przemianom do aldehydów, kwasów tłuszczowych i dalej aż do wody i CO2. Zawarto dział poświęcony dodatkom poprawiającym biodostępność zanieczyszczeń takim jak metanol, oleje silikonowe czy surfaktanty. Omówiono nowości w zakresie rozwiązań konstrukcyjnych oraz układy hybrydowe. Rozwiązania takie jak biofiltry obrotowe i ze złożem cylindrycznym mają ograniczać problemy z równomiernym przepływem gazów i nadmiernymi oporami przepływu. Wśród układów hybrydowych zaprezentowano rozwiązania z przedfiltrem z węglem aktywnym oraz modułem wstępnej obróbki promieniami UV. Przedstawiono też ideę biofiltra łączącego usuwanie zanieczyszczeń z generacją prądu elektrycznego w mikrobiologicznych ogniwach paliwowych.
Rocznik
Strony
1001--1020
Opis fizyczny
Bibliogr. 82 poz., tab., rys.
Twórcy
  • West Pomeranian University of Technology, Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Poland
Bibliografia
  • 1. Abbasian, F., Lockington, R., Mallavarapu, M., & Naidu, R. (2015). A Comprehensive Review of Aliphatic Hydrocarbon Biodegradation by Bacteria. Applied Biochemistry and Biotechnology, 176(3), 670-699.
  • 2. Amin, M. M., Rahimi, A., Bina, B., Heidari, M., & Mohammadi Moghadam, F. (2014). Performance evaluation of a scoria-compost biofilter treating xylene vapors. Journal of Environmental Health Science and Engineering, 12(1), 1-10.
  • 3. Anet, B., Couriol, C., Lendormi, T., Amrane, A., Cloirec, P. Le, Cogny, G., & Fillières, R. (2013). Characterization and Selection of Packing Materials for Biofiltration of Rendering Odourous Emissions. Water Air Soil Pollut, 224(1622), 1-13.
  • 4. Avalos Ramirez, A., García-Aguilar, B. P., Jones, J. P., & Heitz, M. (2012). Improvement of methane biofiltration by the addition of non-ionic surfactants to biofilters packed with inert materials. Process Biochemistry, 47(1), 76-82.
  • 5. Balasubramanian, P., Philip, L., & Bhallamudi, S. M. (2011). Biodegradation of chlorinated and non-chlorinated VOCs from pharmaceutical industries. Applied Biochemistry and Biotechnology, 163(4), 497-518.
  • 6. Balasubramanian, P., Philip, L., & Murty Bhallamudi, S. (2012). Biotrickling filtration of complex pharmaceutical VOC emissions along with chloroform. Bioresource Technology, 114, 149-159.
  • 7. Brandt, E. M. F., Duarte, F. V., Vieira, J. P. R., Melo, V. M., Souza, C. L., Araújo, J. C., & Chernicharo, C. A. L. (2016). The use of novel packing material for improving methane oxidation in biofilters. Journal of Environmental Management, 182, 412-420.
  • 8. Cabeza, I. O., López, R., Giraldez, I., Stuetz, R. M., & Díaz, M. J. (2013). Biofiltration of α-pinene vapours using municipal solid waste (MSW) - Pruning residues (P) composts as packing materials. Chemical Engineering Journal, 233, 149-158.
  • 9. Chang, S., Lu, C., Huang, H., & Hsu, S. (2015). Removal of VOCs emitted from p-xylene liquid storage tanks by a full-scale compost biofilter. Process Safety and Environmental Protection, 93(June), 218-226.
  • 10. Chen, H., Yang, C., Zeng, G., Luo, S., & Yu, G. (2012). Tubular biofilter for toluene removal under various organic loading rates and gas empty bed residence times. Bioresource Technology, 121, 199-204.
  • 11. Chen, J., Gu, S., Zheng, J., & Chen, J. (2016). Simultaneous removal of SO2and NO in a rotating drum biofilter coupled with complexing absorption by FeII(EDTA). Biochemical Engineering Journal, 114, 87-93.
  • 12. Chen, X., Liang, Z., An, T., & Li, G. (2016). Comparative elimination of dimethyl disulfide by maifanite and ceramic-packed biotrickling filters and their response to microbial community. Bioresource Technology, 202, 76-83.
  • 13. Cheng, Y., He, H., Yang, C., Yan, Z., Zeng, G., & Qian, H. (2016). Effects of anionic surfactant on n-hexane removal in biofilters. Chemosphere, 150, 248-253.
  • 14. Cheng, Z., Lu, L., Kennes, C., Ye, J., Yu, J., Chen, D., & Chen, J. (2016a). A composite microbial agent containing bacterial and fungal species: Optimization of the preparation process, analysis of characteristics, and use in the purification for volatile organic compounds. Bioresource Technology, 218, 751-760.
  • 15. Cheng, Z., Lu, L., Kennes, C., Yu, J., & Chen, J. (2016b). Treatment of gaseous toluene in three biofilters inoculated with fungi/bacteria: Microbial analysis, performance and starvation response. Journal of Hazardous Materials, 303, 83-93.
  • 16. Chikere, C. B., Okpokwasili, G. C., & Chikere, B. O. (2011). Monitoring of microbial hydrocarbon remediation in the soil. 3 Biotech, 1(3), 117-138.
  • 17. Choi, E. J., Jin, H. M., Lee, S. H., Math, R. K., Madsen, E. L., & Jeon, C. O. (2013). Comparative genomic analysis and benzene, toluene, ethylbenzene, and o-, m-, and p-xylene (BTEX) degradation pathways of Pseudoxanthomonas spadix BD-a59. Applied and Environmental Microbiology, 79(2), 663-671.
  • 18. Dorado, a D., Lafuente, F. J., Gabriel, D., & Gamisans, X. (2010). A comparative study based on physical characteristics of suitable packing materials in biofiltration. Environmental Technology, 31(2), 193-204.
  • 19. Estrada, J. M., Hernández, S., Muñoz, R., & Revah, S. (2013). A comparative study of fungal and bacterial biofiltration treating a VOC mixture. Journal of Hazardous Materials, 250-251, 190-197.
  • 20. Fernández, M., Ramírez, M., Pérez, R. M., Gómez, J. M., & Cantero, D. (2013). Hydrogen sulphide removal from biogas by an anoxic biotrickling filter packed with Pall rings. Chemical Engineering Journal, 225, 456-463.
  • 21. Fortin, N. Y., & Deshusses, M. A. (1999). Treatment of methyl tertbutyl ether vapors in biotrickling filters. 2. Analysis of the rate-limiting step and behavior under transient conditions. Environmental Science and Technology, 33(17), 2987-2991.
  • 22. Gandu, B., Sandhya, K., Gangagni Rao, A., & Swamy, Y. V. (2013). Gas phase bio-filter for the removal of triethylamine (TEA) from air: Microbial diversity analysis with reference to design parameters. Bioresource Technology, 139, 155-160.
  • 23. García-Pérez, T., Aizpuru, A., & Arriaga, S. (2013). By-passing acidification limitations during the biofiltration of high formaldehyde loads via the application of ozone pulses. Journal of Hazardous Materials, 262, 732-740.
  • 24. Gutiérrez-Acosta, O. B., Arriaga, S., Escobar-Barrios, V. A., Casas-Flores, S., & Almendarez-Camarillo, A. (2012). Performance of innovative PU-foam and natural fiber-based composites for the biofiltration of a mixture of volatile organic compounds by a fungal biofilm. Journal of Hazardous Materials, 201-202, 202-208.
  • 25. He, Z., Li, J., Chen, J., Chen, Z., Li, G., Sun, G., & An, T. (2012). Treatment of organic waste gas in a paint plant by combined technique of biotrickling filtration with photocatalytic oxidation. Chemical Engineering Journal, 200-202(x), 645-653.
  • 26. Hernández, J., Prado, Ó. J., Almarcha, M., Lafuente, J., & Gabriel, D. (2010). Development and application of a hybrid inert/organic packing material for the biofiltration of composting off-gases mimics. Journal of Hazardous Materials, 178(1-3), 665-672.
  • 27. Hinojosa-Reyes, M., Rodríguez-González, V., & Arriaga, S. (2012). Enhancing ethylbenzene vapors degradation in a hybrid system based on photocatalytic oxidation UV/TiO2-In and a biofiltration process. Journal of Hazardous Materials, 209-210, 365-371.
  • 28. Hu, Q. yuan, Wang, C., & Huang, K. xin. (2015). Biofiltration performance and characteristics of high-temperature gaseous benzene, hexane and toluene. Chemical Engineering Journal, 279, 689-695.
  • 29. Jianming, Y., Wei, L., Zhuowei, C., Yifeng, J., Wenji, C., & Jianmeng, C. (2014). Dichloromethane removal and microbial variations in a combination of UV pretreatment and biotrickling filtration. Journal of Hazardous Materials, 268, 14-22.
  • 30. Jin, H. M., Choi, E. J., & Jeon, C. O. (2013). Isolation of a BTEX-degrading bacterium, janibacter sp. sb2, from a sea-tidal flat and optimization of biodegradation conditions. Bioresource Technology, 145, 57-64.
  • 31. Kasperczyk, D., Bartelmus, G., & Ga̧szczak, A. (2012). Removal of styrene from dilute gaseous waste streams using a trickle-bed bioreactor: Kinetics, mass transfer and modeling of biodegradation process. Journal of Chemical Technology and Biotechnology, 87(6), 758-763.
  • 32. Kumar, T., Rahul, M., & Chandrajit, B. (2011). Biofiltration of volatile organic compounds (VOCs): An overview. Res J Chem Sci, 2231(8), 606X.
  • 33. Kwapisz, E. (2006). Szlaki tlenowej biodegradacji węglowodorów ropy naftowej. Biotechnologia, 2(73), 166-188.
  • 34. Lebrero, R., Rodríguez, E., Estrada, J. M., García-Encina, P. A., & Muñoz, R. (2012). Odor abatement in biotrickling filters: Effect of the EBRT on methyl mercaptan and hydrophobic VOCs removal. Bioresource Technology, 109, 38-45.
  • 35. Lebrero, R., Rodríguez, E., Martin, M., García-Encina, P. A., & Muñoz, R. (2010). H2S and VOCs abatement robustness in biofilters and air diffusion bioreactors: A comparative study. Water Research, 44(13), 3905-3914.
  • 36. Li, J., Ye, G., Sun, D., An, T., Sun, G., & Liang, S. (2012). Performance of a biotrickling filter in the removal of waste gases containing low concentrations of mixed VOCs from a paint and coating plant. Biodegradation, 23(1), 177-187.
  • 37. Liao, D., Li, J., Sun, D., Xu, M., An, T., & Sun, G. (2015). Treatment of volatile organic compounds from a typical waste printed circuit board dismantling workshop by a pilot-scale biotrickling filter. Biotechnology and Bioprocess Engineering, 20(4), 766-774.
  • 38. Maestre, J. P., Rovira, R., Álvarez-Hornos, F. J., Fortuny, M., Lafuente, J., Gamisans, X., & Gabriel, D. (2010). Bacterial community analysis of a gas-phase biotrickling filter for biogas mimics desulfurization through the rRNA approach. Chemosphere, 80(8), 872-880.
  • 39. Meckenstock, R. U., Boll, M., Mouttaki, H., Koelschbach, J. S., Tarouco, P. C., Weyrauch, P., … Himmelberg, A. M. (2016). Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons. J Mol Microbiol Biotechnol., 26, 92-118.
  • 40. Morlett-Chávez, J. A., Ascacio-Martínez, J. Á., Rivas-Estilla, A. M., Velázquez-Vadillo, J. F., Haskins, W. E., Barrera-Saldaña, H. A., & Acuña-Askar, K. (2010). Kinetics of BTEX biodegradation by a microbial consortium acclimatized to unleaded gasoline and bacterial strains isolated from it. International Biodeterioration and Biodegradation, 64(7), 581-587.
  • 41. Mudliar, S., Giri, B., Padoley, K., Satpute, D., Dixit, R., Bhatt, P., … Vaidya, A. (2010). Bioreactors for treatment of VOCs and odours - A review. Journal of Environmental Management, 91(5), 1039-1054.
  • 42. Nanda, S., Sarangi, P. K., & Abraham, J. (2012). Microbial biofiltration technology for odour abatement: An introductory review. Journal of Soil Science and
  • 43. Environmental Management, 3(2), 28-35. Obayori, O. S., & Salam, L. B. (2010). Degradation of polycyclic aromatic hydrocarbons: Role of plasmids. Scientific Research and Essays Special Review, 5(25), 4093-4106.
  • 44. Paca, J., Halecky, M., Novak, V., Jones, K., & Kozliak, E. (2012). Biofiltration of a styrene/acetone vapor mixture in two reactor types under conditions of styrene overloading. J Chem Technol Biotechnol, 87, 772-777.
  • 45. Padhi, S. K., & Gokhale, S. (2016). Benzene control from waste gas streams with a sponge-medium based rotating biological contactor. International Biodeterioration and Biodegradation, 109, 96-103.
  • 46. Przybulewska, K., & Wieczorek, A. (2006). Wykorzystanie procesów biodegradacji styrenu do oczyszczania gazów odlotowych. Postepy Mikrobiologii, 45, 51-65.
  • 47. Rahul, Mathur, A. K., & Balomajumder, C. (2013). Biological treatment and modeling aspect of BTEX abatement process in a biofilter. Bioresource Technology, 142, 9-17.
  • 48. Ralebitso-senior, T. K., Senior, E., Felice, R. Di, & Jarvis, K. (2012). Waste Gas Bio filtration : Advances and Limitations of Current Approaches in Microbiology. Environmental Science & Technology.
  • 49. Rene, E. R., López, M. E., Veiga, M. C., & Kennes, C. (2010). Performance of a fungal monolith bioreactor for the removal of styrene from polluted air. Bioresource Technology, 101(8), 2608-2615.
  • 50. Rene, E. R., Mohammad, B. T., Veiga, M. C., & Kennes, C. (2012). Biodegradation of BTEX in a fungal biofilter: Influence of operational parameters, effect of shockloads and substrate stratification. Bioresource Technology, 116, 204-213.
  • 51. Rene, E. R., Montes, M., Veiga, M. C., & Kennes, C. (2011). Styrene removal from polluted air in one and two-liquid phase biotrickling filter: Steady and transient-state performance and pressure drop control. Bioresource Technology, 102(13), 6791-6800.
  • 52. Revah, S., Vergara-fernández, A., & Hernández, S. (2011). Fungal biofiltration for the elimination of gaseous pollutants from air. Mycofactories, (June 2014), 109-120.
  • 53. Robledo-Ortíz, J. R., Ramírez-Arreola, D. E., Pérez-Fonseca, A. A., Gómez, C., González-Reynoso, O., Ramos-Quirarte, J., & González-Núñez, R. (2011). Benzene, toluene, and o-xylene degradation by free and immobilized P. putida F1 of postconsumer agave-fiber/polymer foamed composites. International Biodeterioration and Biodegradation, 65(3), 539-546.
  • 54. Rodriguez, G., Dorado, A. D., Fortuny, M., Gabriel, D., & Gamisans, X. (2014). Biotrickling filters for biogas sweetening: Oxygen transfer improvement for a reliable operation. Process Safety and Environmental Protection, 92(3), 261-268.
  • 55. Rybarczyk, P., Szulczyński, B., Gębicki, J., & Hupka, J. (2019). Treatment of malodorous air in biotrickling filters: A review. Biochemical Engineering Journal, 141(June 2018), 146-162.
  • 56. Sauer, K. (2017). The War on Slime. Scientific American, 317, 64-69.
  • 57. Schmidt, T., & Anderson, W. A. (2017). Biotrickling Filtration of Air Contaminated with 1-Butanol. Environments, 4(3), 57.
  • 58. Sempere, F., Martínez-Soria, V., Penya-roja, J. M., Izquierdo, M., Palau, J., & Gabalof Rendering Odourous Emissions. Water Air Soil Pollut, 224(1622), 1-13.
  • 4. Avalos Ramirez, A., García-Aguilar, B. P., Jones, J. P., & Heitz, M. (2012). Improvement of methane biofiltration by the addition of non-ionic surfactants to biofilters packed with inert materials. Process Biochemistry, 47(1), 76-82.
  • 5. Balasubramanian, P., Philip, L., & Bhallamudi, S. M. (2011). Biodegradation of chlorinated and non-chlorinated VOCs from pharmaceutical industries. Applied Biochemistry and Biotechnology, 163(4), 497-518.
  • 6. Balasubramanian, P., Philip, L., & Murty Bhallamudi, S. (2012). Biotrickling filtration of complex pharmaceutical VOC emissions along with chloroform. Bioresource Technology, 114, 149-159.
  • 7. Brandt, E. M. F., Duarte, F. V., Vieira, J. P. R., Melo, V. M., Souza, C. L., Araújo, J. C., & Chernicharo, C. A. L. (2016). The use of novel packing material for improving methane oxidation in biofilters. Journal of Environmental Management, 182, 412-420.
  • 8. Cabeza, I. O., López, R., Giraldez, I., Stuetz, R. M., & Díaz, M. J. (2013). Biofiltration of α-pinene vapours using municipal solid waste (MSW) - Pruning residues (P) composts as packing materials. Chemical Engineering Journal, 233, 149-158.
  • 9. Chang, S., Lu, C., Huang, H., & Hsu, S. (2015). Removal of VOCs emitted from p-xylene liquid storage tanks by a full-scale compost biofilter. Process Safety and Environmental Protection, 93(June), 218-226.
  • 10. Chen, H., Yang, C., Zeng, G., Luo, S., & Yu, G. (2012). Tubular biofilter for toluene removal under various organic loading rates and gas empty bed residence times. Bioresource Technology, 121, 199-204.
  • 11. Chen, J., Gu, S., Zheng, J., & Chen, J. (2016). Simultaneous removal of SO2and NO in a rotating drum biofilter coupled with complexing absorption by FeII(EDTA). Biochemical Engineering Journal, 114, 87-93.
  • 12. Chen, X., Liang, Z., An, T., & Li, G. (2016). Comparative elimination of dimethyl disulfide by maifanite and ceramic-packed biotrickling filters and their response to microbial community. Bioresource Technology, 202, 76-83.
  • 13. Cheng, Y., He, H., Yang, C., Yan, Z., Zeng, G., & Qian, H. (2016). Effects of anionic surfactant on n-hexane removal in biofilters. Chemosphere, 150, 248-253.
  • 14. Cheng, Z., Lu, L., Kennes, C., Ye, J., Yu, J., Chen, D., & Chen, J. (2016a). A composite microbial agent containing bacterial and fungal species: Optimization of the preparation process, analysis of characteristics, and use in the purification for volatile organic compounds. Bioresource Technology, 218, 751-760.
  • 15. Cheng, Z., Lu, L., Kennes, C., Yu, J., & Chen, J. (2016b). Treatment of gaseous toluene in three biofilters inoculated with fungi/bacteria: Microbial analysis, performance and starvation response. Journal of Hazardous Materials, 303, 83-93.
  • 16. Chikere, C. B., Okpokwasili, G. C., & Chikere, B. O. (2011). Monitoring of microbial hydrocarbon remediation in the soil. 3 Biotech, 1(3), 117-138.
  • 17. Choi, E. J., Jin, H. M., Lee, S. H., Math, R. K., Madsen, E. L., & Jeon, C. O. (2013). Comparative genomic analysis and benzene, toluene, ethylbenzene, and o-, m-, and p-xylene (BTEX) degradation pathways of Pseudoxanthomonas spadix BD-a59. Applied and Environmental Microbiology, 79(2), 663-671.
  • 18. Dorado, a D., Lafuente, F. J., Gabriel, D., & Gamisans, X. (2010). A comparative study based on physical characteristics of suitable packing materials in biofiltration. Environmental Technology, 31(2), 193-204.
  • 19. Estrada, J. M., Hernández, S., Muñoz, R., & Revah, S. (2013). A comparative study of fungal and bacterial biofiltration treating a VOC mixture. Journal of Hazardous Materials, 250-251, 190-197.
  • 20. Fernández, M., Ramírez, M., Pérez, R. M., Gómez, J. M., & Cantero, D. (2013). Hydrogen sulphide removal from biogas by an anoxic biotrickling filter packed with Pall rings. Chemical Engineering Journal, 225, 456-463.
  • 21. Fortin, N. Y., & Deshusses, M. A. (1999). Treatment of methyl tertbutyl ether vapors in biotrickling filters. 2. Analysis of the rate-limiting step and behavior under transient conditions. Environmental Science and Technology, 33(17), 2987-2991.
  • 22. Gandu, B., Sandhya, K., Gangagni Rao, A., & Swamy, Y. V. (2013). Gas phase bio-filter for the removal of triethylamine (TEA) from air: Microbial diversity analysis with reference to design parameters. Bioresource Technology, 139, 155-160.
  • 23. García-Pérez, T., Aizpuru, A., & Arriaga, S. (2013). By-passing acidification limitations during the biofiltration of high formaldehyde loads via the application of ozone pulses. Journal of Hazardous Materials, 262, 732-740.
  • 24. Gutiérrez-Acosta, O. B., Arriaga, S., Escobar-Barrios, V. A., Casas-Flores, S., & Almendarez-Camarillo, A. (2012). Performance of innovative PU-foam and natural fiber-based composites for the biofiltration of a mixture of volatile organic compounds by a fungal biofilm. Journal of Hazardous Materials, 201-202, 202-208.
  • 25. He, Z., Li, J., Chen, J., Chen, Z., Li, G., Sun, G., & An, T. (2012). Treatment of organic waste gas in a paint plant by combined technique of biotrickling filtration with photocatalytic oxidation. Chemical Engineering Journal, 200-202(x), 645-653.
  • 26. Hernández, J., Prado, Ó. J., Almarcha, M., Lafuente, J., & Gabriel, D. (2010). Development and application of a hybrid inert/organic packing material for the biofiltration of composting off-gases mimics. Journal of Hazardous Materials, 178(1-3), 665-672.
  • 27. Hinojosa-Reyes, M., Rodríguez-González, V., & Arriaga, S. (2012). Enhancing ethylbenzene vapors degradation in a hybrid system based on photocatalytic oxidation UV/TiO2-In and a biofiltration process. Journal of Hazardous Materials, 209-210, 365-371.
  • 28. Hu, Q. yuan, Wang, C., & Huang, K. xin. (2015). Biofiltration performance and characteristics of high-temperature gaseous benzene, hexane and toluene. Chemical Engineering Journal, 279, 689-695.
  • 29. Jianming, Y., Wei, L., Zhuowei, C., Yifeng, J., Wenji, C., & Jianmeng, C. (2014). Dichloromethane removal and microbial variations in a combination of UV pretreatment and biotrickling filtration. Journal of Hazardous Materials, 268, 14-22.
  • 30. Jin, H. M., Choi, E. J., & Jeon, C. O. (2013). Isolation of a BTEX-degrading bacterium, janibacter sp. sb2, from a sea-tidal flat and optimization of biodegradation conditions. Bioresource Technology, 145, 57-64.
  • 31. Kasperczyk, D., Bartelmus, G., & Ga̧szczak, A. (2012). Removal of styrene from dilute gaseous waste streams using a trickle-bed bioreactor: Kinetics, mass transfer and modeling of biodegradation process. Journal of Chemical Technology and Biotechnology, 87(6), 758-763.
  • 32. Kumar, T., Rahul, M., & Chandrajit, B. (2011). Biofiltration of volatile organic compounds (VOCs): An overview. Res J Chem Sci, 2231(8), 606X.
  • 33. Kwapisz, E. (2006). Szlaki tlenowej biodegradacji węglowodorów ropy naftowej. Biotechnologia, 2(73), 166-188.
  • 34. Lebrero, R., Rodríguez, E., Estrada, J. M., García-Encina, P. A., & Muñoz, R. (2012). Odor abatement in biotrickling filters: Effect of the EBRT on methyl mercaptan and hydrophobic VOCs removal. Bioresource Technology, 109, 38-45.
  • 35. Lebrero, R., Rodríguez, E., Martin, M., García-Encina, P. A., & Muñoz, R. (2010). H2S and VOCs abatement robustness in biofilters and air diffusion bioreactors: A comparative study. Water Research, 44(13), 3905-3914.
  • 36. Li, J., Ye, G., Sun, D., An, T., Sun, G., & Liang, S. (2012). Performance of a biotrickling filter in the removal of waste gases containing low concentrations of mixed VOCs from a paint and coating plant. Biodegradation, 23(1), 177-187.
  • 37. Liao, D., Li, J., Sun, D., Xu, M., An, T., & Sun, G. (2015). Treatment of volatile organic compounds from a typical waste printed circuit board dismantling workshop by a pilot-scale biotrickling filter. Biotechnology and Bioprocess Engineering, 20(4), 766-774.
  • 38. Maestre, J. P., Rovira, R., Álvarez-Hornos, F. J., Fortuny, M., Lafuente, J., Gamisans, X., & Gabriel, D. (2010). Bacterial community analysis of a gas-phase biotrickling filter for biogas mimics desulfurization through the rRNA approach. Chemosphere, 80(8), 872-880.
  • 39. Meckenstock, R. U., Boll, M., Mouttaki, H., Koelschbach, J. S., Tarouco, P. C., Weyrauch, P., … Himmelberg, A. M. (2016). Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons. J Mol Microbiol Biotechnol., 26, 92-118.
  • 40. Morlett-Chávez, J. A., Ascacio-Martínez, J. Á., Rivas-Estilla, A. M., Velázquez-Vadillo, J. F., Haskins, W. E., Barrera-Saldaña, H. A., & Acuña-Askar, K. (2010). Kinetics of BTEX biodegradation by a microbial consortium acclimatized to unleaded gasoline and bacterial strains isolated from it. International Biodeterioration and Biodegradation, 64(7), 581-587.
  • 41. Mudliar, S., Giri, B., Padoley, K., Satpute, D., Dixit, R., Bhatt, P., … Vaidya, A. (2010). Bioreactors for treatment of VOCs and odours - A review. Journal of Environmental Management, 91(5), 1039-1054.
  • 42. Nanda, S., Sarangi, P. K., & Abraham, J. (2012). Microbial biofiltration technology for odour abatement: An introductory review. Journal of Soil Science and
  • 43. Environmental Management, 3(2), 28-35. Obayori, O. S., & Salam, L. B. (2010). Degradation of polycyclic aromatic hydrocarbons: Role of plasmids. Scientific Research and Essays Special Review, 5(25), 4093-4106.
  • 44. Paca, J., Halecky, M., Novak, V., Jones, K., & Kozliak, E. (2012). Biofiltration of a styrene/acetone vapor mixture in two reactor types under conditions of styrene overloading. J Chem Technol Biotechnol, 87, 772-777.
  • 45. Padhi, S. K., & Gokhale, S. (2016). Benzene control from waste gas streams with a sponge-medium based rotating biological contactor. International Biodeterioration and Biodegradation, 109, 96-103.
  • 46. Przybulewska, K., & Wieczorek, A. (2006). Wykorzystanie procesów biodegradacji styrenu do oczyszczania gazów odlotowych. Postepy Mikrobiologii, 45, 51-65.
  • 47. Rahul, Mathur, A. K., & Balomajumder, C. (2013). Biological treatment and modeling aspect of BTEX abatement process in a biofilter. Bioresource Technology, 142, 9-17.
  • 48. Ralebitso-senior, T. K., Senior, E., Felice, R. Di, & Jarvis, K. (2012). Waste Gas Bio filtration : Advances and Limitations of Current Approaches in Microbiology. Environmental Science & Technology.
  • 49. Rene, E. R., López, M. E., Veiga, M. C., & Kennes, C. (2010). Performance of a fungal monolith bioreactor for the removal of styrene from polluted air. Bioresource Technology, 101(8), 2608-2615.
  • 50. Rene, E. R., Mohammad, B. T., Veiga, M. C., & Kennes, C. (2012). Biodegradation of BTEX in a fungal biofilter: Influence of operational parameters, effect of shockloads and substrate stratification. Bioresource Technology, 116, 204-213.
  • 51. Rene, E. R., Montes, M., Veiga, M. C., & Kennes, C. (2011). Styrene removal from polluted air in one and two-liquid phase biotrickling filter: Steady and transient-state performance and pressure drop control. Bioresource Technology, 102(13), 6791-6800.
  • 52. Revah, S., Vergara-fernández, A., & Hernández, S. (2011). Fungal biofiltration for the elimination of gaseous pollutants from air. Mycofactories, (June 2014), 109-120.
  • 53. Robledo-Ortíz, J. R., Ramírez-Arreola, D. E., Pérez-Fonseca, A. A., Gómez, C., González-Reynoso, O., Ramos-Quirarte, J., & González-Núñez, R. (2011). Benzene, toluene, and o-xylene degradation by free and immobilized P. putida F1 of postconsumer agave-fiber/polymer foamed composites. International Biodeterioration and Biodegradation, 65(3), 539-546.
  • 54. Rodriguez, G., Dorado, A. D., Fortuny, M., Gabriel, D., & Gamisans, X. (2014). Biotrickling filters for biogas sweetening: Oxygen transfer improvement for a reliable operation. Process Safety and Environmental Protection, 92(3), 261-268.
  • 55. Rybarczyk, P., Szulczyński, B., Gębicki, J., & Hupka, J. (2019). Treatment of malodorous air in biotrickling filters: A review. Biochemical Engineering Journal, 141(June 2018), 146-162.
  • 56. Sauer, K. (2017). The War on Slime. Scientific American, 317, 64-69.
  • 57. Schmidt, T., & Anderson, W. A. (2017). Biotrickling Filtration of Air Contaminated with 1-Butanol. Environments, 4(3), 57.
  • 58. Sempere, F., Martínez-Soria, V., Penya-roja, J. M., Izquierdo, M., Palau, J., & GabalGabaldón, C. (2010). Comparison between laboratory and pilot biotrickling filtration of air emissions from painting and wood finishing. Journal of Chemical Technology and Biotechnology, 85(3), 364-370.
  • 59. Showqi, I., Lone, F. A., Ashraf, M., Mehmood, M. A., & Rashid, A. (2016). Biofilters inMitigation of Odour Pollution-A Review. Nature Environment and Pollution Technology., 15(4), 1177-1185.
  • 60. Shukla, A. K., Vishwakarma, P., Singh, R. S., Upadhyay, S. N., & Dubey, S. K. (2010). Bio-filtration of trichloroethylene using diazotrophic bacterial community. Bioresource Technology, 101(7), 2126-2133.
  • 61. Singh, K., Singh, R. S., Rai, B. N., & Upadhyay, S. N. (2010). Biofiltration of toluene using wood charcoal as the biofilter media. Bioresource Technology, 101(11), 3947-3951.
  • 62. Singh, R. S., Rai, B. N., & Upadhyay, S. N. (2010). Removal of toluene vapour from air stream using a biofilter packed with polyurethane foam. Process Safety and Environmental Protection, 88(5), 366-371.
  • 63. Song, J., Namgung, H., & Ahmed, Z. (2012). Biodegradation of toluene using Candida tropicalis immobilized on polymer matrices in fluidized bed bioreactors. Journal of Hazardous Materials, 241-242, 316-322.
  • 64. Sówka, I., Miller, U., & Adamiak, W. (2016a). Usuwanie toluenu z powietrza metodą biofiltracji z zastosowaniem wybranego niejonowego surfaktantu. Przemysł Chemiczny, 95(11), 2230-2233.
  • 65. Sówka, I., Miller, U., & Adamiak, W. (2016b). Wstępna ocena możliwości zastosowania β-cyklodekstryny jako czynnika wpływającego na skuteczność oczyszczania gazów metodą biofiltracji. Rocznik Ochrona Środowiska, 18(2), 100-109.
  • 66. Sun, D., Li, J., An, T., Xu, M., Sun, G., & Guo, J. (2012). Bacterial community diversity and functional gene abundance of structured mixed packing and inert packing materials based biotrickling filters. Biotechnology and Bioprocess Engineering, 17(3), 643-653.
  • 67. Van Elsas, J. D., Jansson, J. K., & Trevors, J. C. (2007). Modern Soil Microbiology. In Modern Soil Microbiology (2nd ed. Ho, pp. 387-429).
  • 68. Varjani, S. J. (2017). Microbial degradation of petroleum hydrocarbons. Bioresource Technology, 223, 277-286.
  • 69. Vergara-Fernández, A., Revah, S., Moreno-Casas, P., & Scott, F. (2018). Biofiltration of volatile organic compounds using fungi and its conceptual and mathematical modeling. Biotechnology Advances, 36(4), 1079-1093.
  • 70. Wang, X., Wang, Q., Li, S., & Li, W. (2015). Degradation pathway and kinetic analysis for p-xylene removal by a novel Pandoraea sp. strain WL1 and its application in a biotrickling filter. Journal of Hazardous Materials, 288, 17-24.
  • 71. Wei, Z., Sun, J., Xie, Z., Liang, M., & Chen, S. (2010). Removal of gaseous toluene by the combination of photocatalytic oxidation under complex light irradiation of UV and visible light and biological process. Journal of Hazardous Materials, 177(1-3), 814-821.
  • 72. Wieczorek, A. (2005). Pilot-Scale biofiltration of waste gases containing aliphatic and aromatic hydrocarbons, phenol, cresols, and other volatile organic compounds. Environmental Progress, 24(1), 60-66.
  • 73. Wieczorek, A., Przybulewska, K., Karpowicz, K., & Nowak, M. J. (2013). The screening of microorganisms capable of Methyl Tert-Butyl Ether (MTBE) biodegradation. Polish Journal of Microbiology, 62(2), 141-147.
  • 74. Wilkes, H., Buckel, W., Golding, B. T., & Rabus, R. (2016). Metabolism of hydrocarbons in n-Alkane utilizing anaerobic bacteria. J Mol Microbiol Biotechnol, 26, 138-151.
  • 75. Wu, C. H., Shih, J. C., & Lin, C. W. (2016). Continuous production of power using microbial fuel cells with integrated biotrickling filter for ethyl acetate-contaminated air stream treatment. International Journal of Hydrogen Energy, 41(47), 21945- 21954.
  • 76. Xi, J., Saingam, P., Gu, F., Hu, H. Y., & Zhao, X. (2014). Effect of continuous ozone injection on performance and biomass accumulation of biofilters treating gaseous toluene. Applied Microbiology and Biotechnology, 99(1), 33-42.
  • 77. Zamir, M., Halladj, R., Sadraei, M., & Nasernejad, B. (2012). Biofiltration of gas-phase hexane and toluene mixture under intermittent loading conditions. Process Safety and Environmental Protection, 90(4), 326-332.
  • 78. Zare, H., Najafpour, G., Rahimnejad, M., Tardast, A., & Gilani, S. (2012). Biofiltration of ethyl acetate by Pseudomonas putida immobilized on walnut shell. Bioresource Technology, 123, 419-423.
  • 79. Zehraoui, A., Hassan, A. A., & Sorial, G. A. (2012). Effect of methanol on the biofiltration of n-hexane. Journal of Hazardous Materials, 219-220, 176-182.
  • 80. Zhai, J., Shi, P., Wang, Z., Jiang, H., & Long, C. (2017). A comparative study of bacterial and fungal-bacterial steady-state stages of a biofilter in gaseous toluene removal: performance and microbial community. Journal of Chemical Technology and Biotechnology, 92(11), 2853-2861.
  • 81. Zhang, L.L., Leng, S.Q., Zhu, R.Y., & Chen, J.M. (2011). Degradation of chlorobenzene by strain Ralstonia pickettii L2 isolated from a biotrickling filter treating a chlorobenzene-contaminated gas stream. Applied Microbiology and Biotechnology, 91(2), 407-415.
  • 82. Zhang, L., Zhang, C., Cheng, Z., Yao, Y., & Chen, J. (2013). Biodegradation of benzene, toluene, ethylbenzene, and o-xylene by the bacterium Mycobacterium cosmeticum byf-4. Chemosphere, 90(4), 1340-1347.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-45595640-486e-4bcb-a74e-b46a5f9c7353
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.