PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of seawater main components on frothability in the flotation of Cu-Mo sulfide ore

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main problem in the flotation of Cu-Mo sulfide ores in seawater is poor floatability of molybdenite at pH>9.5. Froth stability plays a very important role in determining concentrate grade and recovery in flotation operations and in this paper both floatability and frothability have been tested. The frothability have been studied by measuring froth equilibrium layer thickness in a modified laboratory flotation cell. Two chemical aspects of seawater need to be considered: the content of NaCl (around 87% of salinity), and the concentration of secondary ions (around 13%) (sulfate, magnesium, calcium, bicarbonate ions, etc.). Seawater, NaCl solutions, and seawater’s ions were found to depress frothability. The effect of pH on frothability over the pH range from 9.5 to 11, which is very strong in freshwater, becomes negligible in seawater and the tested electrolyte solutions. The analysis of the relationship between the mechanisms of molybdenite depression and the loss of frothability in seawater implies that the effects of the studied ions on molybdenite floatability and on pulp frothability are different. While depression of molybdenite floatability could be tracked down to magnesium hydroxide precipitation as a main culprit, the depression of frothability is a much more complicated issue.
Rocznik
Strony
17--29
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
  • NB Keevil Institute of Mining Engineering, University of British Columbia, Vancouver, Canada
autor
  • Department of Metallurgical Engineering, University of Concepcion, Chile
autor
  • Department of Metallurgical Engineering, University of Concepcion, Chile
Bibliografia
  • 1. BICAK, O, EKMEKCI, Z., CAN, M., OZTURK, Y., 2012. The effect of water chemistry on froth stability and surface chemistry of the flotation of a Cu-Zn sulfide ore, Int. J. Miner. Process., 102–103, 32–37.
  • 2. CASTRO S., VENEGAS I, LANDERO A., LASKOWSKI J.S., 2010. Frothing in seawater flotation systems, Proc. 25th International Mineral Processing Congress. Brisbane, 4039–4047.
  • 3. CASTRO S., LASKOWSKI J.S., 2011. Froth flotation in saline water. KONA, No 29, 4–15.
  • 4. CASTRO S., TOLEDO P., LASKOWSKI J.S., 2012a. Foaming properties of flotation frothers at high electrolyte concentrations. Water in Mineral Processing – Proc. of the First International Symposium (J. Drelich, ed.) , SME, 51–60.
  • 5. CASTRO S., RAMOS O., CANCINO J.P., LASKOWSKI J.S., 2012b. Frothing in the flotation of copper sulfide ores in sea water. Water in Mineral Processing – Proc. of the First International Symposium (J. Drelich, Ed.), SME, 211–223.
  • 6. CASTRO S., RIOSECO P., LASKOWSKI J.S., 2012c. Depression of molybdenite in seawater. Proc. 26th Int. Mineral Processing Congress, New Delhi, 739–752.
  • 7. CASTRO S., 2012. Challenges in flotation of Cu-Mo sulfide ores in sea water, Water in Mineral Processing – Proc. of the First International Symposium (J. Drelich, Ed.), SME, 29–40.
  • 8. CHO Y.S., LASKOWSKI J.S, 2002a. Effect of flotation frothers on bubble size and foam stability, Int. J. Miner. Process., 64, 69–80.
  • 9. CHO Y.S., LASKOWSKI J.S., 2002b. Bubble coalescence and its effect on dynamic foam stability. Can. J. Chem. Eng., 80, 299–305.
  • 10. EIGELES M.A., VOLVENKOVA V.S., 1963. Inorganic Electrolytes and Colloids in Elementary Flotation, Proc. 6th Int. Mineral Processing Congress (A. Roberts, ed.), Peramon Press, 513–525.
  • 11. EIGELES M.A., VOLOVA M.L., 1964. On the Mechanism of Activating and Depressant Action in Soap Flotation, Proc. 7th Int. Mineral Processing Congress (N. Arbiter, ed.), Gordon and Breach, Vol. 1, 269–277.
  • 12. EIGELES M.A., VOLOVA M.L., 1968. Activating of air bubbles by the insoluble products of reactions in flotation, Proc. 8th Int. Mineral Processing Congress, Leningrad, Vol. 2, 353–364 (in Russian).
  • 13. ELMAHDY A.M., MIRNEZAMI M., FINCH J.A., 2008. Zeta potential of air bubbles in presence of frothers. Int. J. Miner. Process., 89, 40–43.
  • 14. HAN M.Y., AHN H.J., SHIN M.S., KIM S.R., 2004. The effect of divalent metal ions on the zeta potential of bubbles, Water Sci. and Technology, 50, 49–56.
  • 15. KLASSEN V.I., MOKROUSOV V.A., 1963. An Introduction to the theory of flotation, Butterworths, London.
  • 16. KUAN S.H., FINCH J.A., 2010. Impact of talc on pulp and froth properties in F150 and 1-pentanol frother systems, Miner. Eng., 23, 1003–1009.
  • 17. KURNIAWAN A.U., OZDEMIR O., NGUYEN A.V., OFORI P., FIRTH B., 2011. Flotation of coal particles in MgCl2, NaCl, and NaClO3 solutions in the absence and presence of Dowfroth 250. Int. J. Miner. Process., 98, 137-144.
  • 18. LASKOWSKI J.S., CASTRO S., 2012. Hydrolyzing ions in flotation circuits: seawater flotation, Proc. 13th Int. Mineral Processing Symp., Bodrum (Turkey), 219–228.
  • 19. LASKOWSKI J.S., TLHONE J., WILLIAMS P., DING K., 2003. Fundamental properties of the polyoxypropylene alkyl ether flotation frothers, Int. J. Miner. Process., 72, 289–300.
  • 20. LEKKI J., LASKOWSKI J.S., 1975. A new concept of frothing in flotation systems and general classification of flotation frothers, 11th Int. Mineral Processing Congress, Cagliari, 427–448.
  • 21. LI C., SOMASUNDARAN P., 1991. Reversal of bubble charge in multivalent inorganic salt solutions – effect of magnesium. J. Colloid Interface. Sci., 146, 215–218.
  • 22. LI C., SOMASUNDARAN P., 1992. Reversal of bubble charge in multivalent inorganic salt solutions – effect of aluminium. J. Colloid Interface Sci., 148(2), 587–591.
  • 23. MELO F., LASKOWSKI J.S., 2007. Effect of frothers and solid particles on the rate of water transfer to froth, Int. J. Miner. Process., 84, 33–40.
  • 24. OLIIVEIRA C., RUBIO J., 2011. Zeta potential of single and polymer-coated microbubbles using an adapted microelectrophoresis technique. Int. J. Miner. Process., 98, 118–123.
  • 25. QUINN J.J., KRACHT W., GOMEZ C.O., GAGNON C., FINCH J.A., 2007. Comparing the effect of salts and frother (MIBC) on gas dispersion and froth properties, Miner. Eng., 20, 1296–1302.
  • 26. TAO D., LUTTRELL G.H., YOON R-H., 2000. A parametric study of froth stability and its effect on column flotation of fine particles, Int. J. Miner. Process., 59, 25–43.
  • 27. YANG C., DABROS T., LI D., CZARNECKI, MASLIYAH J. H., 2001. Measurements of the zeta potential of gas bubbles in aqueous solutions by microelectrophoresis method. J. Colloid Interface Sci., 243, 128–135.
  • 28. ZANIN M., WIGHTMAN E., GRANO S.R., FRANZIDIS J.P., 2009. Quantifying contributions to froth stability in porphyry copper plants, Int. J. Miner. Process., 91, 19–27.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4555732d-5c59-446b-aa29-b72f3600d7b0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.