Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Meaningful progress in the fields of MEMS is associated with the continuous development of the micromachining technologies. One of the most promising devices in MEMS is thermal sensors. When the first microbolometer appeared on the market, a huge interest in thermal detectors was observed. This paper is a short overview study on microbolometer geometry, different solutions and possibilities to implement them as electrical models.
Rocznik
Tom
Strony
16--25
Opis fizyczny
Bibliogr. 36 poz., il. kolor., rys., wykr.
Twórcy
autor
- Department of Microelectronics and Computer Science, Lodz University of Technology, ul. Wólczańska 221/223, 90-924 Lodz, Poland
autor
- Department of Microelectronics and Computer Science, Lodz University of Technology, ul. Wólczańska 221/223, 90-924 Lodz, Poland
autor
- Department of Microelectronics and Computer Science, Lodz University of Technology, ul. Wólczańska 221/223, 90-924 Lodz, Poland
autor
- Department of Microelectronics and Computer Science, Lodz University of Technology, ul. Wólczańska 221/223, 90-924 Lodz, Poland
autor
- Department of Microelectronics and Computer Science, Lodz University of Technology, ul. Wólczańska 221/223, 90-924 Lodz, Poland
Bibliografia
- [1] H. Kaplan, “Practical Applications of Infrared Thermal Sensing and Imaging Equipment”, SPIE Optical Engineering Press, 1993.
- [2] R. J. Dempsey, D.G. Davis, R.G. Jr. Bruice and R.A. Lodder. “Biological and Medical Applications of Near Infrared Spectrometry” in Applied Spectroscopy, Vol.50 (2), pp. 18A-34A, 1996.
- [3] P.W. Kruse, “Uncooled Thermal Imaging Arrays, Systems, and Applications”, SPIE Press, 2001.
- [4] E. L. Dereniak, G. D. Boreman. „Infrared Detectors and Systems”, John Wiley and Sons, 1996, s. 395- 438.
- [5] P.R. Norton, “Infrared Detectors in the Next Millennium”, Proc. SPIE, Vol. 3698, pp. 652–665. 1999.
- [6] X. Chen, K. Wu, “A new bias equalization for microbolometer array”, Symposium on Photonics and Optoelectronics, Chengdu, China, pp. 1-4, June 19-21, 2010.
- [7] S.I. Haider, S. Majzoub, M. Alturaigi, M. Abdel-Rahman, “ColumnWise ROIC Design for Uncooled Microbolometer Array”, in Proc. International Conference ICTRC, Abu Dhabi, United Arab Emirates, pp. 56-59, May 17-19, 2015.
- [8] P.W. Kruse, D.D. Skatrud, “Uncooled infrared imaging arrays and systems”, Semiconductors and Semimetals, Vol. 47, Academic Press, London 1997.
- [9] R. S. Saxena, R. K. Bhan, C. R. Jalwania, and Kumkum Khurana, “Effect of Excessive Bias Heating on a Titanium Microbolometer Infrared Detector”, IEEE Sensors Journal, Vol. 8, No. 11, pp. 1801- 1804, November 2008.
- [10] K. Sandeep, D. Butler, “Infrared Sensing With Self-Supporting YBCO Uncooled IR Microbolometer Array Integrated With On-Chip CCBDI Readout Circuit”, IEEE Sensors Journal, Vol. 9, No. 4, p. 414, April 2009.
- [11] http://www.sofradir-ec.com/wp-uncooled-detectors-achieve.asp (22/06/2016).
- [12] K. Young Su, K. Tae Hyun, K. Gyung Tae, L. Boo Taek, L. Seong Kyu, L. Hi Deok, and L. Ga Won, “Uncooled Microbolometer Arrays With High Responsivity Using Meshed Leg Structure”, IEEE Photonics Technology Letters, Vol. 25, No. 21, pp. 2108-2110, November 1, 2013.
- [13] F. Niklaus, C. Vieider, H. Jakobsen, “MEMS-Based Uncooled Infrared Bolometer Arrays” in A Review, MEMS/MOEMS Technologies and Applications III, edited by C. Jung-Chih, C. Xuyuan, Y. Zhaoying, L. Xinxin, Proc. of SPIE, Vol. 6836, 68360D, 2007.
- [14] S-B. Ju, Y-J. Yong, S-G. Kim, “Design and fabrication of a high fillfactor micr-bolometer using double sacrificial layers”, SPIE, Vol. 3698, Infrared Technology and Applications, XXV, 1999.
- [15] R.A. Wood, “Uncooled Microbolometer Infrared Sensor Arrays” in
- [Infrared Detectors and Emitters: Materials and Devices] ed. Capper P. and Elliott, C.T., Kluwer Academic Publishers, Norwell, 2001.
- [16] F. Niklaus, et al., “Performance model for uncooled infrared bolometer arrays and performance predictions of bolometers operating at atmospheric pressure”, Infrared Physics & Technology 51(3), pp. 168- 177, 2008.
- [17] W. Chang, Y. Liang, “Geometric Design of Microbolometers Made From CMOS Polycrystalline Silicon”, IEEE Sensors Journal, Vol. 15, No. 1, p. 265, January 2015.
- [18] X. He, G. Karunasiri, T. Mei, W. J. Zeng, P. Neuzil, and U. Sridhar, “Performance of Microbolometer Focal Plane Arrays Under Varying Pressure”, IEEE Electron Device Letters, Vol. 21, No. 5, p. 234, May 2000.
- [19] P. Zając, C. Maj, M. Szermer, M. Lobur, A. Napieralski, “Analytical tool for electro-thermal modelling of microbolometers”, in Proc. International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, EuroSimE, Gent, Belgium, pp. 1-6, April 7-9, 2014.
- [20] N. H. Sabah, “Electric circuits and signals”, CRC Press, Boca Raton, p. 784, 2007.
- [21] D. Wurfel and H. Vogt, “An improved electrical and thermal model of a microbolometer for electronic circuit simulation”, Adv. Radio Sci., 10, pp. 183–186, 2012.
- [22] H. M. Oloomi, M. S. Alam, and M. M. Rana, “Noise Performance Evaluation of Uncooled Infrared Detectors” (June 2009), IEEE Sensors Journal, Vol. 11, No. 4, pp. 971-972, April 2011.
- [23] P. Zając, C. Maj , M. Szermer, M. Lobur, A. Napieralski, “Analytical Thermo-electric Model of Uncooled Microbolometer”, Machine Dynamics Research, Vol. 37, No 3, p.102, 2013.
- [24] E. Iborra, M. Clement, L. Herrero, “Sangrador IR uncooled bolometers based on amorphous GeSiO on silicon micromachined structures”, Journal of Microelectromechanical Systems, Vol. 11, No. 4, pp. 322- 329, 2002.
- [25] H. Lee, J. Yoon, E. Yoon, S. Ju, Y. Yong, W. Lee, S. Kim, “A high fillfactor infrared bolometer using micromachined multilevel electrothermal structures,” IEEE Transactions on Electron Devices, Vol. 46, pp. 1489-1491, July 1999.
- [26] F. Utermöhlen, I. Herrmann, “Model and Measurement Technique for Temperature Dependent Electrothermal, Parameters of Microbolometer Structures”, DTIP Barcelona, Spain, 16-18 April 2013.
- [27] H. Budzier, G. Gerlach, “Thermal Infrared Sensors, in Thermal Infrared Sensors: Theory, Optimisation and Practice”, John Wiley & Sons, Ltd, Chichester, UK, 2011.
- [28] V. Szekeley, „A new evaluation method of thermal transient measurement results“, Microelectronics Journal, Vol. 28, No. 3, pp. 277- 292, 1997.
- [29] M. Marz, P. Nance, “Thermal Modeling of Power-electronic Systems”, Technical report, Fraunhofer Institute for integrated circuits IIS-B, Erlangen, 2000.
- [30] J. Nazdrowicz, M. Szermer, C. Maj, W. Zabierowski and A. Napieralski, “A Study on Microbolometer Electro-thermal Circuit Modelling”, in Proc. International Conference MIXDES, Torun, Poland, pp. 458-463, June 25-27, 2015.
- [31] G. Li, N. Yuan, J. Li, X. Chenc, “Thermal Simulation of Micromachined Bridge and Self-heating”, Journal of Sensors and Actuators A, 126, pp. 430–435, 2006.
- [32] P. Neuzil, T. Mei, “A Method of Suppressing Self-Heating Signal of Bolometers”, IEEE Sensors Journal, Vol. 4, No. 2, p. 208, April 2004.
- [33] M. Almasri, Z. Celik-Butler, D. Butler, A. Yaradanakul, A. Yildiz, “Semiconducting YBaCuO microbolometers for uncooled broad-band IR sensing”, Proc. of the SPIE, Vol. 4369, pp. 264-273, 2001.
- [34] G. Bieszczad, M. Kastek, “Measurement of thermal behavior of detector array surface with the use of microscopic thermal camera”, Metrology and Measurement Systems, Vol. XVIII, No. 4, pp. 679-690, 2011.
- [35] R. S. Saxena, A. Panwar, S. S. Lamba, R.K. Bhan, “A sub-circuit model of a microbolometer IR detector and its experimental validation”, Sensors and Actuators A 171, pp. 138-145, 2011.
- [36] J. Nazdrowicz, “A study on microbolometer electro-thermal circuit modelling”, in Proc. International Conference MIXDES, Torun, Poland, pp. 458-463, June 25-27, 2015.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-45524705-1020-4da1-b166-55e50bdf6a8d