PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preparation of Nano Membranes with Triethylenetetramine Dihydrochloride (TETA-DH) and Multiwalled Carbon Nanotubes (MWCNT) for Seawater Desalination

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Seawater Desalination uses hydrophobic membranes. Many techniques have been developed to improve membrane hydrophobicity by depositing particles on the membrane surface. In this study, a nanocomposite membrane utilizing Triethylenetetramine (TETA) is suggested. The membrane incorporates Multiwalled Carbon Nanotubes (MWCNT) in conjunction with Triethylenetetramine Dihydrochloride (TETA-DH). In water bath, different percentages of TETA-DH films are formed. Electro-spin fabrication of MWCNTs using TETA-DH yields smooth, low-pore membranes. Membranes and their characteristics are identified by contact angle, layer thickness, and conductivity measurements. Membrane performance is examined for heat flux and salt rejection. Compared to commercial membranes, the proposed membrane exhibits superior antifouling and anti-wetting features. The membrane exhibited permeation and rejection ratio of 46 Kg m2 h–1 and 99.99% respectively which is superior as compared with other membranes. The hydrophilic Surface Modifying Macromolecules percentage (LSMM%) is evaluated because it depends on average pore size, hydrophobicity, surface porosity, and shape. The tests demonstrate the excellent performance of the proposed membrane for controlling membrane fouling.
Rocznik
Strony
1--7
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wz.
Twórcy
  • Department of Chemical Engineering Technology, Yanbu Industrial College, Royal, Commission Yanbu Colleges & Institutes, P.O. Box 30346, Yanbu Industrial City, 41912, Saudi Arabia
Bibliografia
  • 1. Safaei, J., Xiong, P. & Wang, G. (2020). Progress and Prospects of Two-Dimensional Materials for Membrane-Based Water Desalination. Mater. Today Adv. 8, 100108. DOI: 10.1016/j.mtadv.2020.100108.
  • 2. Ou, R., Zhang, H., Truong, V.X., Zhang, L., Hegab, H.M., Han, L., Hou, J., Zhang, X., Deletic, A., Jiang, L., Simon, G.P. & Wang, H. (2020). A Sunlight-Responsive Metal–Organic Framework System for Sustainable Water Desalination. Nat. Sustain. 3(12), 1052–1058. DOI: 10.1038/s41893-020-0590-x.
  • 3. Ihsanullah, I. (2020). Potential of MXenes in Water Desalination: Current Status and Perspectives. Nano-Micro Lett. 12(1), 1–20. DOI: 10.1007/s40820-020-0411-9.
  • 4. Lawal, D.U., Antar, M.A., Khalifa, A., Zubair, S.M. & Al-Sulaiman, F. (2020). Experımental Investigation of Heat Pump Driven Humidification-Dehumidification Desalination System for Water Desalination and Space Conditioning. Desalination.475 (October 2019). DOI: 10.1016/j.desal.2019.114199.
  • 5. Jie, G., Kongyin, Z., Xinxin, Z., Zhijiang, C., Min, C., Tian, C. & Junfu, W. (2015). Preparation and Characterization of Carboxyl Multi-Walled Carbon Nanotubes/Calcium Alginate Composite Hydrogel Nano-Filtration Membrane. Mater. Lett. 157, 112–115. DOI: 10.1016/j.matlet.2015.05.080.
  • 6. Nitodas, S.F., Das, M. & Shah, R. (2022). Applications of Polymeric Membranes with Carbon Nanotubes: A Review. Membranes (Basel). 12(5). DOI: 10.3390/membranes12050454.
  • 7. Skuse, C., Tarpani, R. R. Z., Gorgojo, P., Gallego-Schmid, A. & Azapagic, A. (2023). Comparative Life Cycle Assessment of Seawater Desalination Technologies Enhanced by Graphene Membranes. Desalination.551, 1–17. DOI: 10.1016/j.desal.2023.116418.
  • 8. Essalhi, M., Khayet, M., Tesfalidet, S., Alsultan, M. & Tavajohi, N. (2021). Desalination by Direct Contact Membrane Distillation Using Mixed Matrix Electrospun Nanofibrous Membranes with Carbon-Based Nanofillers: A Strategic Improvement. Chem. Eng. J. 426 (July), 131316. DOI: 10.1016/j.cej.2021.131316.
  • 9. Fu, J., Ni, J., Wang, J., Qu, T., Hu, F., Liu, H., Zhang, Q., Xu, Z., Gong, C. & Wen, S. (2023). Highly Proton Conductive and Mechanically Robust SPEEK Composite Membranes Incorporated with Hierarchical Metal-Organic Framework/Carbon Nanotubes Compound. J. Mater. Res. Technol. 22, 2660–2672. DOI: 10.1016/j.jmrt.2022.12.118.
  • 10. Fu, H., Wang, Z., Li, P., Qian, W., Zhang, Z., Zhao, X., Feng, H., Yang, Z., Kou, Z. & He, D. (2023). Well-Structured 3D Channels within GO-Based Membranes Enable Ultrafast Wastewater Treatment. Nano Res. 16 (2), 1826–1834. DOI: 10.1007/s12274-022-4970-6.
  • 11. Yan, K.K., Jiao, L., Lin, S., Ji, X., Lu, Y. & Zhang, L. (2018). Superhydrophobic Electrospun Nanofiber Membrane Coated by Carbon Nanotubes Network for Membrane Distillation. Desalination. 437, 26–33. DOI: 10.1016/j.desal.2018.02.020.
  • 12. Ali, S., Rehman, S.A.U., Luan, H.Y., Farid, M.U. & Huang, H. (2019). Challenges and Opportunities in Functional Carbon Nanotubes for Membrane-Based Water Treatment and Desalination. Sci. Total Environ. 646(19), 1126–1139. DOI: 10.1016/j.scitotenv.2018.07.348.
  • 13. Haghighat, N. & Vatanpour, V. (2020). Fouling Decline and Retention Increase of Polyvinyl Chloride Nanofiltration Membranes Blended by Polypyrrole Functionalized Multiwalled Carbon Nanotubes. Mater. Today Commun. 23 (January 2019), 100851. DOI: 10.1016/j.mtcomm.2019.100851.
  • 14. Amiri, S., Asghari, A., Vatanpour, V. & Rajabi, M. (2020). Fabrication and Characterization of a Novel Polyvinyl Alcohol-Graphene Oxide-Sodium Alginate Nanocomposite Hydrogel Blended PES Nanofiltration Membrane for Improved Water Purification. Sep. Purif. Technol. 250 (May), 117216. DOI: 10.1016/j.seppur.2020.117216.
  • 15. Manorma, Ferreira, I., Alves, P., Gil, M.H. & Gando-Ferreira, L.M. (2021). Lignin Separation from Black Liquor by Mixed Matrix Polysulfone Nanofiltration Membrane Filled with Multiwalled Carbon Nanotubes. Sep. Purif. Technol. 260 (December 2020). DOI: 10.1016/j.seppur.2020.118231.
  • 16. Ismail, M.F., Islam, M.A., Khorshidi, B., Tehrani-Bagha, A. & Sadrzadeh, M. (2022). Surface Characterization of Thin-Film Composite Membranes Using Contact Angle Technique: Review of Quantification Strategies and Applications. Adv. Colloid Interface Sci. 299, 102524. DOI: 10.1016/j.cis.2021.102524
  • 17. Cai, J., Liu, X., Zhao, Y. & Guo, F. (2018). Membrane Desalination Using Surface Fluorination Treated Electrospun Polyacrylonitrile Membranes with Nonwoven Structure and Quasi-Parallel Fibrous Structure. Desalination. 429, 70–75. DOI: 10.1016/j.desal.2017.12.019
  • 18. Ravi, J., Othman, M.H.D., Matsuura, T., Bilad, M.R., El-Badawy, T.H., Aziz, F., Ismail, A.F., Rahman, M.A. & Jaafar, J. (2020). Polymeric Membranes for Desalination Using Membrane Distillation: A Review. Desalination. 490, 114530. DOI: 10.1016/j.desal.2020.114530.
  • 19. Zhao, S. & Zou, L. (2011). Effects of Working Temperature on Separation Performance, Membrane Scaling and Cleaning in Forward Osmosis Desalination. Desalination. 278(1–3), 157–164. DOI: 10.1016/j.desal.2011.05.018.
  • 20. Rahman, M.S., Ahmed, M. & Chen, X.D. (2006). Freezing-melting Process and Desalination: I. Review of the State-of-the-art. Sep. Purif. Rev. 35(02), 59–96. DOI: 10.1080/15422110600671734.
  • 21. Alklaibi, A.M. & Lior, N. (2005). Membrane-Distillation Desalination: Status and Potential. Desalination. 171(2), 111–131. DOI: 10.1016/j.desal.2004.03.024.
  • 22. Wang, Q., Li, N., Bolto, B., Hoang, M. & Xie, Z. (2016). Desalination by Pervaporation: A Review. Desalination. 387, 46–60. DOI: 10.1016/j.desal.2016.02.036.
  • 23. Padaki, M., Isloor, A.M., Ismail, A.F. & Abdullah, M.S. (2012). Synthesis, Characterization and Desalination Study of Novel PSAB and MPSAB Blend Membranes with Polysulfone (PSf). Desalination. 295, 35–42. DOI:10.1016/j.desal.2012.03.014.
  • 24. Qi, P., Zhao, C., Wang, R., Fei, T. & Zhang, T. (2018). High-Performance QCM Humidity Sensors Using Acidized-Multiwalled Carbon Nanotubes as Sensing Film. IEEE Sens. J. 18(13), 5278–5283. DOI: 10.1109/JSEN.2018.2839110.
  • 25. Xue, G., Chen, Q., Lin, S., Duan, J., Yang, P., Liu, K., Li, J. & Zhou, J. (2018). Highly Efficient Water Harvesting with Optimized Solar Thermal Membrane Distillation Device. Glob. Challenges. 2(5–6), 1800001. DOI: 10.1002/gch2.201800001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-454e301d-3962-4067-bf68-d9d6886cccf9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.