PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characteristics and Adsorption Test of Activated Carbon from Indonesian Bituminous Coal

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The fast-growing batik industry in Indonesia raises the problem of the waste containing chromium. One method to remove chromium is by the adsorption process using activated carbon. Activated carbon can be made from coal. This commodity is a mining mineral the availability of which is still abundant in Indonesia. This study aimed to obtain: 1) the best concentration of activator and activation temperature in the manufacture of activated carbon; 2) characteristics of activated carbon (moisture content, volatile matter content, ash content, fixed carbon content, iodine number, specific surface area, pore-volume, pore surface area, pore radius, and SEM photos); 3) % activated carbon removal for chromium and maximum adsorption capacity for chromium; 4) Freundlich and Langmuir isotherm adsorption equation of activated carbon to chromium. The manufacture of activated carbon was carried out by a carbonization process followed by a chemical and physical activation processes. The chemical activator was ammonium phosphate with doses of 74.5 g/L, 149 g/L, 223.5 g/L, and 298 g/L. Meanwhile, physical activation was carried out at 848 K, 948 K, 1048 K, and 1148 K. The next step was to test the adsorption capacity of activated carbon on artificial batik waste containing chromium. The results showed that: 1) activator concentration did not significantly affect the characteristics of activated carbon. Meanwhile, the optimal activation temperature is at a temperature of 1048 K and 1148 K, which can produce the activated carbon that meets the requirements of activated carbon of the Indonesian National Standard 06-3730-1995 with the following contents: air content 0.16–0.81%; volatile matter 14.62–19.31%; ash 6.48–9.97%; fixed carbon 70.60–75.79%; iodine number 1243.13–1258.65%; specific surface area 31.930 m2/g; activated carbon pore volume 0.011 cc/g; pore surface area 8.905 m2/g; activated carbon pore radius 30.614; 3) the proportion of activated carbon removal for chromium is 37–53% and the maximum adsorption capacity for chromium is 52 mg/g; 4) the Freundlich equation test resulted in a constant R2 of 0.5126, n 2.4870, KF 8.8818 mg/g, while the Langmuir equation test resulted in a constant R2 of 0.8897, b -0.0075 L/mg, qm -90.0901 mg/g.
Słowa kluczowe
Rocznik
Strony
129--138
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Mining Engineering Department, Faculty of Mineral and Marine Technology, Institut Teknologi Adhi Tama Surabaya, Jl. Arief Rachman Hakim 100 Surabaya 60117, Indonesia
  • Chemical Engineering Department, Faculty of Industrial Technology, Institut Teknologi Adhi Tama Surabaya, Jl. Arief Rachman Hakim 100 Surabaya 60117, Indonesia
Bibliografia
  • 1. Yáñez-Varela A.J., Mendoza-Escamilla V.X., Alonzo-Garcia A., Martinez-Delgadillo S.A., Gonzalez-Neria I., Gutiérrez-Torres C. 2018. CFD and experimental validation of an electrochemical reactor electrode design for Cr(VI) removal. Chemical Engineering Journal, 349, 119–128. https://doi.org/https://doi.org/10.1016/j.cej.2018.05.067
  • 2. Budianto A., Kusdarini E., Amrullah N.H., Ningsih E., Udyani K A. 2021. Physics and chemical activation to produce activated carbon from empty palm oil bunches waste. IOP Conference Series: Materials Science and Engineering. IOP Publishing.
  • 3. Budihardjo A.M., Wibowo G.Y., Ramadan S.B., Serunting M.A., Yohana E., Syafrudin. 2021. Mercury removal using modified activated carbon of peat soil and coal in simulated landfill leachate. Environmental Technology & Innovation, 24. https://doi.org/https://doi.org/10.1016/j.eti.2021.102022
  • 4. Azha S.F., Ismail S. 2021. Feasible and economical treatment of real hand-drawn batik/textile effluent using zwitterionic adsorbent coating: Removal performance and industrial application approach. Journal of Water Process Engineering, 41, 1–12. https://doi.org/https://doi.org/10.1016/j.jwpe.2021.102093
  • 5. Basu S., Ghosh G., Saha S. 2018. Adsorption characteristics of phosphoric acid induced activation of bio-carbon: Equilibrium, kinetics, thermodynamics and batch adsorber design. Process Safety and Environmental Protection, 117, 125–142. https://doi.org/https://doi.org/10.1016/j.psep.2018.04.015
  • 6. BSN. 1995. Standar Nasional Indonesia untuk Karbon Aktif Teknis SNI 06-3730-1995.
  • 7. Budianto A., Kusdarini E., Effendi S.S.W., Aziz M. 2019. The Production of Activated Carbon from Indonesian Mangrove Charcoal. IOP Conference Series: Materials Science and Engineering, 462(1). https://doi.org/10.1088/1757-899X/462/1/012006
  • 8. Budianto A., Kusdarini E., Mangkurat W., Nurdiana E., Asri N. 2021. Activated Carbon Producing from Young Coconut Coir and Shells to Meet Activated Carbon Needs in Water Purification Process. Journal of Physics: Conference Series. Surabaya: IOP Publishing.
  • 9. Budianto A., Kusdarini E., Effendi S., Aziz M. 2019. The Production of Activated Carbon from Indonesian Mangrove Charcoal. Materials Science and Engineering, 462, 1–8. https://doi.org/10.1088/1757-899X/462/1/012006
  • 10. Dhivya E., Magadevan D., Palguna Y., Mishra T., Aman N. 2019. Synthesis of titanium based hetero MOF photocatalyst for reduction of Cr (VI) from wastewater. Journal of Environmental Chemical Engineering, 7(4), 103240. https://doi.org/https://doi.org/10.1016/j.jece.2019.103240
  • 11. Effendi H. 2003. Telaah Kualitas Air : Bagi Pengelolaan Sumber Daya dan Lingkungan Perairan. Bogor: Kanisius, IPB.
  • 12. Fatimah I., Sahroni I., Dahlyani M.S.E., Oktaviyani A.M.N., Nurillahi R. 2021. Surfactant-modified Salacca zalacca skin as adsorbent for removal of methylene blue and Batik’s wastewater. Materials Today: Proceedings, 44, 3211–3216. https://doi.org/https://doi.org/10.1016/j.matpr.2020.11.440
  • 13. Gong Y., Gai L., Tang J., Fu J., Wang Q., Zeng E.Y. 2017. Reduction of Cr(VI) in simulated groundwater by FeS-coated iron magnetic nanoparticles. Science of The Total Environment, 595, 743–751. https://doi.org/https://doi.org/10.1016/j.scitotenv.2017.03.282
  • 14. Hessley R.K., Reasoner J.E., Riley J.T. 1986. Coal Science (Tenth Edit). New York: John Wiley & Sons Inc.
  • 15. Kirk R.E., Othmer D.F. 1979. Encyclopedia of Chemical Technology (Third Edit). New York: John Wiley & Sons Inc.
  • 16. Kusdarini E., Budianto A. 2018. Removal of Manganese from Well-Water on Pasuruan, East Java, Indonesia Using Fixed Bed Cation Exchanger and Prediction of Kinetics Adsorption. Indian Journal of Science and Technology, 11(23), 1–7.
  • 17. Kusdarini E., Budianto A., Ghafarunnisa D. 2017. Produksi Karbon Aktif dari Batubara Bituminus dengan Aktivasi Tunggal H3PO4, Kombinasi H3PO4-NH4HCO3, dan Termal. Reaktor, 17(2), 74–80. https://doi.org/http://dx.doi.org/10.14710/reaktor.17.2.74-80
  • 18. Kusdarini E., Hakim L., Yanuwiadi B., Suyadi S. 2021. Study in the Development of Fixed Bed Filter Adoption of Public Health of Lake Water Users. Walailak Journal of Science and Technology, 18(8), 1–10. https://doi.org/https://doi.org/10.48048/wjst.2021.9131
  • 19. Kusdarini E., Purwaningsih D.Y., Budianto A. 2018. Adsorption of Pb2+ Ion in Water Well with Amberlite Ir 120 Na Resin. Pollution Research, 37(4), 307–312.
  • 20. Kusdarini E., Purwaningsih D.Y., Budianto A. 2021. Removal Pb2+ of Well Water using Purolite C-100 Resin and Adsorption Kinetic. Pollution Research, 40(2).
  • 21. Kusdarini E., Yanuwiadi B., Hakim L., Suyadi S. 2020. Adoption Model of Water Filter by The Society of Lake Water Users in Dry Land Area, Gresik, East Java, Indonesia. International Journal on Advanced Science Engineering Information Technology, 10(5), 2089–2096.
  • 22. Liu W., Jin L., Xu J., Liu J., Li Y., Zhou P., Wang X. 2019. Insight into pH dependent Cr(VI) removal with magnetic Fe3S4. Chemical Engineering Journal, 359, 564–571. https://doi.org/https://doi.org/10.1016/j.cej.2018.11.192
  • 23. Liu X., Li Q., Zhang G., Zheng Y., Zhao Y. 2022. Preparation of activated carbon from Guhanshan coal and its effect on methane adsorption thermodynamics at different temperatures. Powder Technology, 395, 424–442. https://doi.org/https://doi.org/10.1016/j.powtec.2021.09.076
  • 24. Mahmudi M., Arsad S., Amelia M.C., Rohmaningsih H.A., Prasetiya F.S. 2020. An Alternative Activated Carbon from Agricultural Waste on Chromium Removal. Journal of Ecological Engineering, 21(8), 1–9. https://doi.org/https://doi.org/10.12911/22998993/127431
  • 25. Fu M.M., Mo C.H., Li H., Zhang Y.N., Huang W.X., Wong M.H. 2019. Comparison of physicochemical properties of biochars and hydrochars produced from food wastes. Journal of Cleaner Production, 236. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.117637
  • 26. Nowruzi R., Heydari M., Javanbakht V. 2020. Synthesis of a chitosan/polyvinyl alcohol/activate carbon biocomposite for removal of hexavalent chromium from aqueous solution. International Journal of Biological Macromolecules, 147, 209–216.
  • 27. Song G., Deng R., Yao Z., Chen H., Romero C., Lowe T., Baltrusaitis J. 2020. Anthracite coal-based activated carbon for elemental Hg adsorption in T simulated flue gas: Preparation and evaluation. Fuel, 275, 1–10. https://doi.org/https://doi.org/10.1016/j.fuel.2020.117921
  • 28. Suliestyah, Astuti A.D. 2021. Optimasi Aktivator ZnCl2 dalam Pembuatan Karbon Aktif dari Batubara dan Pengujian Karbon Aktif sebagai Adsorben. Penelitian Dan Karya Ilmiah, 6(2), 191–201.
  • 29. Wirosoedarmo R., Anugroho F., Mustaqiman A.N., Amanah R., Gustinasari K. 2020. Phytore-mediation of chrome in batik industry wastewater using Cyperus haspan. Nanothechnology for Envi-Ronmental Engineering, 5(2), 1–7.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-454931b5-b810-4d5f-8457-1a0b9b6e8c12
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.