Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this study was to highlight the interest of using CFD technique as a diagnostic tool of a malfunctioning Solid Oxide Fuel Cells. Hydrogen starvation of a SOFC due to nitrogen dilution is one of the cell dysfunctions and can lead to its degradation. Identification of the starvation point allows to improve cell performance and establish the best conditions for degradation tests. To illustrate a potential of the CFD tool, several simulations of a single planar SOFC and its behaviour under hydrogen starvation were performed and analysed. The results showed that at lower cell voltage values of 0.3 and 0.5 V significant gradients in the electric current were noticed due to a local reduction in hydrogen concentration. The CFD analysis allowed defining desirable mass flow rate of hydrogen to SOFCs to avoid fuel starvation. The model constitutes a helpful tool for optimizing cell design and operational conditions.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
16--25
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- West Pomeranian University of Technology, Institute of Chemical Engineering and Environmental Protection Processes, Faculty of Chemical Technology and Engineering, Szczecin, al. Piastów 42, 71-065Szczecin, Poland
autor
- West Pomeranian University of Technology, Institute of Chemical Engineering and Environmental Protection Processes, Faculty of Chemical Technology and Engineering, Szczecin, al. Piastów 42, 71-065Szczecin, Poland
autor
- West Pomeranian University of Technology, Institute of Chemical Engineering and Environmental Protection Processes, Faculty of Chemical Technology and Engineering, Szczecin, al. Piastów 42, 71-065Szczecin, Poland
Bibliografia
- 1. Theo, W.L., Lim, J.S., Ho, W.S., Hashim, H. & Lee, Ch.T. (2017). Review of distributed generation (DG) system planning and optimisation techniques: comparison of numerical and mathematical modelling methods. Renewable & Sustainable Energy Rev. 67, 513–573. DOI: 10.1016/j.rser.2016.
- 2. Albrecht, K.J. & Braun, R.J. (2016). The effect of coupled mass transport and internal reforming on modeling of solid Oxide fuel cells part I: channel-level model development and steady-state comparison. J. Power Sources, 304, 384–401. DOI: 10.1016/j.jpowsour.2015.11.043.
- 3. Amiri, A., Vijay, Tade, P.M.O., Ahmed, K., Ingram, G.D., Pareek, V. & Utikar, R. (2016). Planar SOFC system modelling and simulation including a 3D stack module, International J. Hydro. Energy 41, 2919–2930. DOI: 10.1016/j.ijhydene.2015.12.076.
- 4. Akhtar, N., Decent, S.P. & Kendall, K. (2010). Numerical modelling of methane powered micro-tubular, single-chamber solid oxide fuel cell. J. Power Sources, 195, 7796–7807. DOI: 10.1016/j.jpowsour.2010.01.084.
- 5. Yurkiv, V. (2014). Reformate-operated SOFC anode performance and degradation considering solid carbon formation: A modeling and simulation study. Electrochimica Acta 143, 114–128. DOI: 10.1016/j.electacta.2014.07.136.
- 6. Gaynor, R., Mueller, F., Jabbari, F. & Brouwer, J. (2008). On control concepts to prevent fuel starvation in solid oxide fuel cells, J. Power Sources 180, 330–342. DOI: 10.1016/j.jpowsour.2008.01.078.
- 7. Stiller, C., Thorud, B., Seljebo, S., Mathisen, O., Karoliussen, H. & Bolland, O. (2005). Finite volume modeling and hybrid cycle performance of planar and tubular solid oxide fuel cells, J. Power Sources 141(2), 227–240. DOI: 10.1016/j.jpowsour.2004.09.019.
- 8. Kandepu, R., Imsland, L., Foss, B. A., Stiller, C., Thorud, B. & Bolland, O. (2007). Energy 32(4), 406–417. DOI: 10.1016/j.energy.2006.07.034.
- 9. Lee, T.H., Park, K.Y., Kim, J.T., Seo, Y., Kim, K.B., Song, K.B., Park, B. & Park, J.Y. (2015). Degradation analysis of anode-supported intermediate temperature – solid oxide fuel cells under various failure modes, J. Power Sources 276, 120–132. DOI: 10.1016/j.jpowsour.2014.11.077.
- 10. Chen, G., Guan, G., Abliz, S., Kasai, Y. & Abudula, A. (2011). Rapid degradation mechanism of Ni-CHO anode in low concentrations of H2 at a high current density. Intern. J. Hydrogen Energy 36, 8461–8467. DOI: 10.1016/j/ijhydene.2011.04.046.
- 11. Brus, G., Miyoshi, K., Iwai, H., Saito, M. & Yoshida, H. (2015). Change of an anode’s microstructure morphology during the fuel starvation of an anode-supported solid oxide fuel cell. Intern. J. Hydrogen Energy 40, 6927–6934. DOI: 10.1016/j/ijhydene.2015.03.143.
- 12. Sarantaridis, D., Rudkin, R.A. & Atkinson, A. (2008). Oxidation failure modes of anode-supported solid oxide fuel cells. J. Power Sources 180, 704–710.
- 13. Hatae, T., Matsuzaki, Y., Yamashita, S. & Yamazaki, Y. (2009). Current density dependence of changes in the microstructure of SOFC anodes during electrochemical oxidation. Solid State Ionics 180, 23–25, 1305–1310. DOI: 10.1016/j.ssi.2009.08.003.
- 14. Fang, Q., Blum, L., Peters, R., Peksen, M., Batfalsky, P. & Stolten, D. (2015). SOFC stack performance under high fuel utilization. Intern. J. Hydrogen Energy 40, 1128–1136. DOI: 10.1016/j.ijhydene.2014.11.094.
- 15. Fang, Q., Blum, L., Batfalsky, P., Menzler, N.H., Packbier, U. & Stolten, D. (2013). Durability test and degradation behaviour of a 2.5 kW SOFC stack with internal reforming of LNG. Intern. J. Hydrogen Energy 38, 36, 16344–16353. DOI: 10.1016/j.ijhydene.2013.09.140.
- 16. Majewski, A.J. & Dhir, A. (2015). Direct utilization of methane in microtubular SOFC, ECS Transactions, 68, 1, 2189–2198, 10.1149/06801.2189ecst. Solid Oxide Fuel Cells 14, SOFC-XIV.
- 17. Torrell, M., Morata, A., Kayser, P., Kendall, M., Kendall, K., Tarancon, A. (2015). Performance and long term degradation of 7 W micro-tubular solid oxide fuel cell for portable applications. J. Power Sources 285, 439–448. DOI: 10.1016/j.jpowsour.2015.03.030.
- 18. Lawlor, V. (2013). Review of the micro-tubular solid oxide fuel cell (part II: cell design issues and research activities). J. Power Sources 240, 421–441. DOI: 10.1016/j.jpowsour.2013.03.191.
- 19. Koshiyama, T., Nakajima, H., Karimata, T., Kitahara, T., Ito, K., Masuda, S., Ogura, Y. & Shimano, J. (2015). Direct current distribution measurement of an electrolyte-supported planar Solid Oxide Fuel Cell under the rib and channel by segmented electrodes. ECS Trans. 68(1), 2217–2226.10.1149/06801.2217ecst. Solid Oxide Fuel Cells 14, SOFC-XIV.
- 20. Sezer, H., Celik, I.B. & Yang, T. (2015). Electrochemical behaviour of phosphine induced anode performance degradation in a planar SOFC: a numerical study. ECS Trans.68(1), 2515–2525. 10.1149/06801.2515ecst. Solid Oxide Fuel Cells 14, SOFC-XIV.
- 21. Zhang, Z., Chen, J., Yue, D., Yang, G., Ye, S., He, C., Wang, W., Yuan, J. & Huang, N. (2014). Three-dimensional CFD modeling of transport phenomena in a cross-flow anodesupported planar SOFC. Energies 7, 80–98. DOI: 10.3390/en7010080.
- 22. Bossel, U. (2015). Small scale power generation for road trucks with planar SOFC system. ECS Transactions 68(1), 193–199. 10.1149/06801.193ecst. Solid Oxide Fuel Cells 14, SOFC-XIV.
- 23. Pianko-Oprych, P., Kasilova, E. & Jaworski, Z. (2014). Quantification of the radiative and convective heat transfer processes and their effect on mSOFC by CFD modelling. PJChT, 16(2), 51–55. DOI: 10.2478/pjct-2014-0029.
- 24. Pianko-Oprych, P., Zinko, T. & Jaworski, Z. (2016). Simulation of the steady-state behaviour of a new design of a single planar Solid Oxide Fuel Cell. Pol. J. Chem. Technol. 18(1), 64–71. DOI: 10.1515/pjct-2016-0011.
- 25. Kakac, S., Pramuanjaroenkij, A. & Zhou, X.Y. (2007). A review of numerical modeling of solid oxide fuel cells, Intern. J. Hydrogen Energy 32, 761–786. DOI: 10.1016/j.ijhydene.2006.11.028.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4542c501-5c1e-4790-95ba-19114ce8e722