PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Defining the computational domain and boundary conditions for fluid flow in a mining excavation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For underground mine workings, the shape of the computational domain may be difficult to define. Historically, the geometry models of mine drifts were not accurate representations of the object but rather a simplified approximation. To fully understand a phenomenon and save time on computations, simplification is often required. Nevertheless, in some situations, a detailed depiction of the geometry of the object may be necessary to obtain adequate simulation results. Laser Scanning enables the generation of 3D digital models with precision beyond the needs of applicable CFD models. Images composed of millions of points must be processed to obtain geometry suitable for computational mesh generation. A section of an underground mine excavation has been selected as an example of such transformation. Defining appropriate boundary conditions, especially the inlet velocity profile, is a challenging issue. Difficult environmental conditions in underground workings exclude the application of the most efficient and precise methods of velocity field measurements. Two attempts to define the inlet velocity profile have been compared. The first one used a sequence of simulations starting from a flat profile of a magnitude equal to the average velocity. The second one was based on the sixteen-point simultaneous velocity measurement, which gave consistency with measurement results within the range of applied velocity measurement method uncertainty. The article introduces a novel methodology that allows for more accurate replication of the mine excavation under study and the attainment of an appropriate inlet velocity profile, validated by a satisfactory correspondence between simulation outcomes and field measurements. The method involves analysing laser-scanned data of a mine excavation, conducting multi-point velocity measurements at specific cross-sections of the excavation that are unique to mining conditions, and utilising the k-ω SST turbulence model that has been validated for similar ventilation problems in mines.
Rocznik
Strony
425--441
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
autor
  • Strata Mechanics Research Institutes of Polish Academy of Science, 27 Reymonta Str., 30-059 Kraków, Poland
  • Strata Mechanics Research Institutes of Polish Academy of Science, 27 Reymonta Str., 30-059 Kraków, Poland
Bibliografia
  • [1] H. Bouchiba, S. Santoso, J.E. Deschaud, L. Rocha-Da-Silva, F. Goulette, T. Coupez, Computational fluid dynamics on 3D point set surfaces. Journal of Computational Physics 7 (2020). DOI: https://doi.org/10.1016/j.jcpx.2020.100069.
  • [2] M. Branny, M. Karch, W. Wodziak, M. Jaszczur R. Nowak, J.S. Szmyd, An experimental validation of a turbulence model for air flow in a mining chamber. Journal of Physics: Conference Series 530 (2014). DOI: https://doi.org/10.1088/1742-6596/530/1/012029.
  • [3] D. Cardwell, P. Vlachos, K. Thole, Developing and fully developed turbulent flow in ribbed channels. Experiments in Fluids 50 (2011). DOI: https://doi.org/10.1007/s00348-010-0993-y.
  • [4] X. Chen, L. Gua, W. Xu, Y. Zhao, Remediation of grassland subsidence and reduction of land occupation with tailings backfill technology: a case study of lead-zinc mine in Inner Mongolia, China. Front. Environ. Sci. 11, 1183945, (2023). DOI: https://doi.org/10.3389/fenvs.2023.1183945.
  • [5] N.S. Dhamakar, G.A. Blasdell, A.S. Lyrintzis, An Overview of Turbulent Inflow Boundary Conditions for large Eddy Simulations. Proc of the 22nr AIAA Computational Fluid Dynamics Conference AIAA Paper (2015).
  • [6] S. Duży, Zachowanie się odrzwi stalowej obudowy podatnej w warunkach deformacyjnych ciśnień górotworu w świetle obserwacji dołowych. Górnictwo i Geoinżynieria 31, 3 (2007).
  • [7] W. Dziurzyński, A. Krach, J. Krawczyk, T. Pałka, Numerical Simulation of Shearer Operation in a Longwall District. Energies 13, 5559 (2020). DOI: https://doi.org/10.3390/en13215559.
  • [8] P. Horyl, P. Maršálek, R. Šňupárek, Z. Poruba, K. Pacześniowski, Parametric Studies of Total Load-Bearing Capacity of Steel Arch Supports. Acta Montanistica Slovaca 24, 3 (2019).
  • [9] J. Janus, Air flow modelling on the geometry reflecting the actual shape of the longwall area and goafs. Archives of Mining Sciences 66 (2021). DOI: https://doi.org/10.24425/ams.2021.139593.
  • [10] J. Janus, Modelling of flow phenomena in mine drifts using the results of laser scanning. Ph.D. thesis, in Polish, Strata Mechanics Research Institute of Polish Academy of Sciences (2018).
  • [11] J. Janus, The Application of laser scanning in the process of constructing a mine drift numerical model. 24th World Mining Congress PROCEEDINGS – Underground Mining, Brazilian Mining Association, Rio de Janeiro (2016).
  • [12] J. Janus, J. Krawczyk, Measurement and simulation of flow in a section of a mine gallery. Energies 14, 4894 (2021). DOI: https://doi.org/10.3390/en14164894.
  • [13] J. Janus, J. Krawczyk, An example of defining boundary conditions for a flow in a mine gallery. Abstract in the XXIII Fluid Mechanics Conference Materials, Zawiercie, 9-12 September 2018 (2018).
  • [14] J. Janus, J. Krawczyk, Modeling velocity fields of air flow in the mine galleries with arc roof support – selected issues. Monograph, Strata Mechanics Research Institute of Polish Academy of Science (2016).
  • [15] J. Janus, J. Krawczyk, The numerical simulation of a sudden inflow of methane into the end segment of a longwall with Y-type ventilation system. Archives of Mining Sciences 59, 4 (2014).
  • [16] J. Janus, J. Krawczyk, Velocity Field infthe area of artificially generated barrier on the mine drift floor. Przegląd Górniczy, No 11 (2015).
  • [17] J. Janus, J. Krawczyk, Velocity field in thein the corners and intersection of mine drifts. Przegląd Górniczy 11(2015).
  • [18] A. Krach, Uncertainty of measurement of selected quantities in mine ventilation measurements. Archives of Mining Sciences, Series: Monograph 8 (2009).
  • [19] A. Krach, J. Krawczyk, J. Kruczkowski, T. Pałka, Variability of the Velocity Field and Volumetric Flow Rate in Air Ways of Underground Mines. Archives of Mining Sciences, Kraków 1 (2006).
  • [20] J. Krawczyk, Single and multiple-dimensional models of unsteady air and gas flows in underground mines. Monograph, Strata Mechanics Research Institute of Polish Academy of Science (2007).
  • [21] J. Kruczkowski, J. Krawczyk, P. Ostrogórski, Laboratory investigations of stationary methane anemometer. Archives of Mining Sciences 62 (2017).
  • [22] F. Menter, Turbulence Modeling for Engineering Flows. ANSYS Inc. (2012).
  • [23] B. Mitka, P. Klapa, P. Pióro, Acquisition and Processing Datafrom UAVs in the Process ofGenerating 3D Models for SolarPotential Analysis. Remote Sens. 15, 1498, (2023). DOI: https://doi.org/10.3390/rs15061498.
  • [24] M. Nadeem, J.H. Lee, J. Lee, H.J. Sung, Turbulent boundary layers over sparsely-spaced rod-roughened walls. International Journal of Heat and Fluid Flow 56 (2015).
  • [25] J. Pokorný, L. Brumarová, P. Kučera, J. Martinka, A. Thomitzek, P. Zapletal, The effect of Air Flow Rate on Smoke Stratification in Longitudinal Tunnel Ventilation. Acta Montanistica Slovaca 24, 3 (2019).
  • [26] T. Roszkowski, W. Trutwin, J. Wacławik, Mine ventilation measurements. Wydawnictwo “Śląsk”, Katowice (1992).
  • [27] P. Skotniczny, P. Ostrogórski, Three-dimensional air velocity distributions in the vicinity of a mine heading’s sidewall. Archives of Mining Sciences 63, 2 (2018).
  • [28] V. Sokoła-Szewioła, J. Wiatr, Application of laser scanning method for the elaboration of digital spatial representation of the shape of underground mining excavation. Przegląd Górniczy 8 (2013).
  • [29] M. Štroner, T. Křemen, J. Braun, R. Urban, P. Blistan, L. Kovanič, Comparison of 2.5D Volume Calculation Methods and Software Solutions, Using Point Clouds Scanned Before and After Mining. Acta Montanistica Slovaca 24, 4 (2019).
  • [30] S. Trenczek, A. Lutyński, A. Dylong, P. Dobrzeniecki, Controlling the longwall coal mining process at a variable level of methane hazard, Acta Montanistica Slovaca 25, 2 (2020).
  • [31] M.A. Wala, S. Vytla, C.D. Taylor, G. Huang, Mine face ventilation: a comparison of CFD results against benchmark experiments for the CFD code validation. Mining Engineering (2007).
  • [32] K. Wierzbiński, Wpływ geometrii chodnika wentylacyjnego i sposobu jego likwidacji na rozkład stężenia metanu w rejonie wylotu ze ściany przewietrzane sposobem U w świetle obliczeń numerycznych CFD. (in Polish) Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią Polskiej Akademii Nauk 94 (2016).
  • [33] H. Yi, M. Kim, D. Lee. Park, J. Applications of Computational Fluid Dynamics forMine Ventilation in Mineral Development. Energies 15, 8405 (2022). DOI: https://doi.org/10.3390/en15228405[34] M. Zagarola, Mean-flow scaling of turbulent pipe flow. Ph.D. thesis, Princeton University (1996).
  • [34] M. Zagarola, Mean-flow scaling of turbulent pipe flow. Ph.D. thesis, Princeton University (1996).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-45392a75-1541-456d-8a6d-5a2724f5242f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.