PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Effect of low temperature annealing on anatase TiO2 layer as photoanode for dye-sensitized solar cell

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Wpływ wyżarzania niskotemperaturowego na warstwę TiO2 jako fotoanodę w ogniwach słonecznych uczulonych na barwnik
Języki publikacji
EN
Abstrakty
EN
Dye-Sensitized Solar Cells (DSSCs) have been successfully fabricated with a low annealing temperature (100 °C to 500 °C) approach to the anatase TiO2 photoanode deposited by a screen-printing method. In this paper, the surface morphology and structure of the TiO2 thin films were studied using Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD) and Raman Spectroscope while I-V characteristic was used for the electrical properties. Sample with an annealing temperature of 300 °C displays a good feature in terms of porosity and enhanced agglomerated surface.
PL
Ogniwa słoneczne uczulone barwnikiem (DSSC) zostały z powodzeniem wyprodukowane przy niskiej temperaturze wyżarzania (100 °C do 500 °C) z fotokomórką anatazu TiO2 osadzaną metodą sitodruku. W artykule zbadano morfologię powierzchni i strukturę cienkich warstw TiO2 przy użyciu skaningowego mikroskopu elektronowego (SEM), dyfrakcji promieniowania rentgenowskiego (XRD) i spektroskopu Ramana, natomiast dla właściwości elektrycznych wykorzystano charakterystykę I-V. Próbka o temperaturze wyżarzania 300 °C wykazuje dobrą cechę pod względem porowatości i zwiększonej powierzchni zaglomerowanej.
Rocznik
Strony
12--16
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
  • Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100, Durian Tunggal. Malaysia
autor
  • Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100, Durian Tunggal. Malaysia
  • Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100, Durian Tunggal. Malaysia
  • Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100, Durian Tunggal. Malaysia
  • Universiti Tun Hussein Onn Malaysia Johor, Malaysia
  • Middle Technical University, Baghdad, Iraq
Bibliografia
  • [1] Noorasid N.S.,Arith F.,Alias S.N.,Mustafa A.N.,Roslan H.,Johari S.H.,Rahim H.R.A.,Ismail M.M., Synthesis of ZnO Nanorod Using Hydrothermal Technique for Dye-Sensitized Solar Cell Application. In: Intelligent Manufacturing and Mechatronics : Springer, Singapore, 2021, 895–905
  • [2] Zulkifili A.N.B.,Kento T.,Daiki M.,Fujiki A., The Basic Research on the Dye-Sensitized Solar Cells (DSSC), Journal of Clean Energy Technologies, 3 (2014), Nr. 5, 382–387
  • [3] Polizzotti A.,Schual-Berke J.,Falsgraf E.,Johal M., Investigating New Materials and Architectures for Grätzel Cells. In: Third Generation Photovoltaics, 2012
  • [4] Maciej Łuszczek, Grzegorz Łuszczek D., Simulation investigation of perovskite-based solar cells, Przeglad Elektrotechniczny, 97 (2021), Nr. 5, 99–102
  • [5] Tivanov M.,Moskalev A.,Kaputskaya I.,Żukowski P., Calculation of the ultimate efficiency of p-n-junction solar cells taking into account the semiconductor absorption coefficient, Przeglad Elektrotechniczny, 92 (2016), Nr. 8, 85–87
  • [6] Arafat Azidin F.,Hannan M.A.,Mohamed A., Renewable Energy Technologies and Hybrid Electric Vehicle Challenges, Przeglad Elektrotechniczny, 89 (2013), Nr. 8, 150–156
  • [7] Arith F.,Anis S.A.M.,Said M.M.,Idris C.M.I., Low cost electrodeposition of cuprous oxide P-N homo-junction solar cell, Advanced Materials Research, 827 (2014), 38–43 — ISBN 9783037859001
  • [8] Gratzel M., Dye-sensitized solar cells, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4, Elsevier (2003), Nr. 2, 145–153
  • [9] Meriam Suhaimy S.H.,Ghazali N.,Arith F.,Fauzi B., Enhanced simazine herbicide degradation by optimized fluoride concentrations in TiO2 nanotubes growth, Optik, 212 (2020), 164651
  • [10] Bakardjieva S.,Subrt J.,Stengl V.,Dianez M.J.,Sayagues M.J., Photoactivity of anatase-rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase, Applied Catalysis B: Environmental, 58 (2005), Nr. 3– 4, 193–202
  • [11] Park N.-G.,van de Lagemaat J.,Frank A.J., Comparison of Dye- Sensitized Rutile- and Anatase-Based TiO2 Solar Cells, The Journal of Physical Chemistry B, 104 (2002), Nr. 38, 8989– 8994
  • [12] Dette C.,Pérez-Osorio M.A.,Kley C.S.,Punke P.,Patrick C.E.,Jacobson P.,Giustino F.,Jung S.J.,Kern K., TiO2 anatase with a bandgap in the visible region, Nano Letters, 14 (2014), Nr. 11, 6533–6538
  • [13] Asahi R.,Taga Y.,Mannstadt W., Electronic and optical properties of anatase, Physical Review B - Condensed Matter and Materials Physics, 61 (2000), Nr. 11, 7459–7465
  • [14] Humayun M.,Raziq F.,Khan A.,Luo W., Modification strategies of TiO2 for potential applications in photocatalysis: A critical review, Green Chemistry Letters and Reviews, 2 (2018), Nr. 11, 86–102
  • [15] N. A. Ludin, A. M. Ramli M.Z.R., Performance Enhancement of Dye Sensitized Solar Cell Using Graphene Oxide Doped Titanium Dioxide Photoelectrode, Malaysian Journal of Analytical Science, 21 (2017), 928–940
  • [16] Mansa R.F.,Yugis A.R.A.,Liow K.S.,Chai S.T.L.,Ung M.C.,Dayou J.,Sipaut C.S., A brief review on photoanode, electrolyte, and photocathode materials for dye-sensitized solar cell based on natural dye photosensitizers. In: Developments in Sustainable Chemical and Bioprocess Technology, 2013 — ISBN 9781461462088, 313–319
  • [17] Abdulraheem Y.M.,Ghoraishi S.,Arockia-Thai L.,Zachariah S.K.,Ghannam M., The effect of annealing on the structural and optical properties of titanium dioxide films deposited by electron beam assisted PVD, Advances in Materials Science and Engineering, (2013)
  • [18] Muaz A.K.M.,Hashim U.,Ibrahim F.,Thong K.L.,Mohktar M.S.,Liu W.W., Effect of annealing temperatures on the morphology, optical and electrical properties of TiO2 thin films synthesized by the sol–gel method and deposited on Al/ TiO2 /SnO2 /p-Si, Microsystem Technologies, 22 (2016), Nr. 4, 871– 881
  • [19] Satoh N.,Nakashima T.,Yamamoto K., Metastability of anatase: Size dependent and irreversible anatase-rutile phase transition in atomic-level precise titania, Scientific Reports, 3 (2013),
  • [20] Kumar S.G.,Rao K.S.R.K., Polymorphic phase transition among the titania crystal structures using a solution-based approach: From precursor chemistry to nucleation process, Nanoscale, 6 (2014), Nr. 20
  • [21] Verma R.,Gangwar J.,Srivastava A.K., Multiphase TiO2 nanostructures: A review of efficient synthesis, growth mechanism, probing capabilities, and applications in bio-safety and health, RSC Advances, 7 (2017), Nr. 70, 44199–44224
  • [22] Fazli F.I.M.,Ahmad M.K.,Soon C.F.,Nafarizal N.,Suriani A.B.,Mohamed A.,Mamat M.H.,Malek M.F.,Shimomura M.,Murakami K., Dye-sensitized solar Cell using pure anatase TiO2 annealed at different temperatures, Optik, 140 (2017), 1063–1068
  • [23] Zhou S.,Zhang J.,Fang Z.,Ning H.,Cai W.,Zhu Z.,Liang Z.,Yao R.,Guo D.,Peng J., Thermal effect of annealing-temperature on solution-processed high-: K ZrO2 dielectrics, RSC Advances, 9 (2019), Nr. 72, 42415–42422
  • [24] Zhao D.,Peng T.,Lu L.,Cai P.,Jiang P.,Bian Z., Effect of annealing temperature on the photoelectrochemical properties of dye-sensitized solar cells made with mesoporous TiO2 nanoparticles, Journal of Physical Chemistry C, 112 (2008), Nr. 22, 8486–8494
  • [25] Xi J.,Dahoudi N. Al,Zhang Q.,Sun Y.,Cao G., Effect of annealing temperature on the performances and electrochemical properties of TiO2 dye-sensitized solar cells, Science of Advanced Materials, 4 (2012), Nr. 7, 727–733
  • [26] El amine Aichouba M.,Rahli M., Solar cell parameters extraction optimization using Lambert function, Przeglad Elektrotechniczny, 95 (2019), Nr. 4, 227–231
  • [27] Sredenšek K.,Seme S., Parameter determination of a solar cell model using differential evolution algorithm, Przeglad Elektrotechniczny, 95 (2019), Nr. 1
  • [28] Azhari M.A.,Arith F.,Ali F.,Rodzi S.,Karim K., Fabrication of low cost sensitized solar cell using natural plant pigment dyes, ARPN Journal of Engineering and Applied Sciences, 10 (2015)
  • [29] Leilaeioun M.,Holman Z.C., Accuracy of expressions for the fill factor of a solar cell in terms of open-circuit voltage and ideality factor, Journal of Applied Physics, 120 (2016), Nr. 12, 123111
  • [30] Qi B.,Wang J., Fill factor in organic solar cells, Physical Chemistry Chemical Physics, 15 (2013), 8972–8982
  • [31] Asyadi Azam M.,Ezyanie Safie N.,Fareezuan Abdul Aziz M.,Noor Amalina Raja Seman R.,Rafi Suhaili M.,Abdul Latiff A.,Arith F.,Mohamed Kassim A.,Hanafi Ani M., Structural characterization and electrochemical performance of nitrogen doped graphene supercapacitor electrode fabricated by hydrothermal method, International Journal of Nanoelectronics and Materials (IJNeaM), 14 (2021), Nr. 2, 127–136
  • [32] Aliyaselvam O. V.,Arith F.,Mustafa A.N.,M. K. N.,Al-Ani O., Solution Processed of Solid State HTL of CuSCN Layer at Low Annealing Temperature for Emerging Solar Cell, International Journal of Renewable Energy Research-IJRER, 11 (2021), Nr. 2, 10
  • [33] Chelvanathan P.,Shahahmadi S.A.,Arith F.,Sobayel K.,Aktharuzzaman M.,Sopian K.,Alharbi F.H.,Tabet N.,Amin N., Effects of RF magnetron sputtering deposition process parameters on the properties of molybdenum thin films, Thin Solid Films, 638, Elsevier B.V. (2017), 213–219
  • [34] Morris M.C.,McMurdie H.F.,Evans E.H.,Paretzkin B.,Parker H.S.,Pyrros N.P.,Hubbard C.R., Standard X-Ray Diffraction Powder Patterns., NBS Monograph (United States), (1982)
  • [35] Roller J., X-ray diffraction. In: PEM Fuel Cell Diagnostic Tools, 2011 — ISBN 9781439839201, 289–313
  • [36] Ohsaka T.,Izumi F.,Fujiki Y., Raman spectrum of anatase, TiO2, Journal of Raman Spectroscopy, 7 (1978), 321–324
  • [37] Mathpal M.C.,Tripathi A.K.,Singh M.K.,Gairola S.P.,Pandey S.N.,Agarwal A., Effect of annealing temperature on Raman spectra of TiO2 nanoparticles, Chemical Physics Letters, 555 (2013), 182–186
  • [38] Cheng G.,Akhtar M.S.,Yang O.B.,Stadler F.J., Structure modification of anatase TiO2 nanomaterials-based photoanodes for efficient dye-sensitized solar cells, Electrochimica Acta, 113 (2013), 527–535
  • [39] Yang X.X.,Li J.W.,Zhou Z.F.,Wang Y.,Yang L.W.,Zheng W.T.,Sun C.Q., Raman spectroscopic determination of the length, strength, compressibility, Debye temperature, elasticity, and force constant of the C-C bond in graphene, Nanoscale, 4 (2012), 502–510
  • [40] Colomban P.,Gouadec G., Raman Scattering Theory and Elements of Raman Instrumentation. In: Raman Spectroscopy for Soft Matter Applications, 2008 — ISBN 9780470453834, 11–29
  • [41] Gupta S.K.,Desai R.,Jha P.K.,Sahoo S.,Kirin D., Titanium dioxide synthesized using titanium chloride: Size effect study using Raman spectroscopy and photoluminescence, Journal of Raman Spectroscopy, 41 (2010), 350–355
  • [42] Musila N.,Munji M.,Simiyu J.,Masika E.,Nyenge R.,Kineene M., Characteristics of TiO2 Compact Layer prepared for DSSC application, Path of Science, 4 (2018), Nr. 10, 3006–3012
  • [43] Arora A.K.,Rajalakshmi M.,Ravindran T.R.,Sivasubramanian V., Raman spectroscopy of optical phonon confinement in nanostructured materials, Journal of Raman Spectroscopy, 38 (2007), 604–617
  • [44] Nizamuddin A.,Arith F.,Rong I.J.,Zaimi M.,Rahimi A.S.,Saat S., Investigation of Copper(I)Thiocyanate (CuSCN) as a Hole Transporting Layer for Perovskite Solar Cells Application, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 78 (2021), Nr. 2, 153–159
  • [45] Yanagisawa K.,Ovenstone J., Crystallization of anatase from amorphous titania using the hydrothermal technique: Effects of starting material and temperature, Journal of Physical Chemistry B, 103 (1999), Nr. 37, 7781–7787
  • [46] Benčina M.,Iglič A.,Mozetič M.,Junkar I., Crystallized TiO2 nanosurfaces in biomedical applications, Nanomaterials, 10 (2020), Nr. 6, 1121
  • [47] Shakeel Ahmad M.,Pandey, A. K.Abd Rahim N., Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review, Renewable and Sustainable Energy Reviews, 77 (2017), 89–108
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-452ebd99-37dd-4a21-baea-8853966c2c1f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.