PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Methane slip during cargo operations on LNG carriers and LNG-fueled vessels

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper was presented the problems of methane leakages during cargo operations on LNG carriers. Also the leakages are possible on LNG fueled vessels. Due to green-house effect from methane on the atmosphere it should be done some measures to avoid it. Building the cargo tanks with very high capacity, utilization of better thermal insulations limits the quantity of boil-off (BOG). It is used as a fuel in marine power plant, only the overage should be liquefied again. The leakages attend all cargo operations which methane goes directly to the atmosphere through pressure-vacuum valves and gas freeing installation to mast riser or by the ventilation system from cargo pump or compressor room. To minimize the slip on LNG carriers the re-liquefaction systems are installed. They are based on cooling systems which boil-off gas (mainly methane) is liquefied at ambient pressure in temperature about - 161.5°C by pre-cooled nitrogen gas at temperature about -180°C. Compressed nitrogen to a pressure about 25MPa through multistage compressors with intercooling systems is expanded step by step (in intercoolers) to pressure about ambient reaches the temperature about -180°C. The re-liquefaction system needs delivering a lot of electric energy. The total level of methane leakages from mining to the last consumer may be different and sometimes very high. The leakage level starts as minimal 1% and may be raised up to 10%. It was indicated the undertaken actions and next possibilities of methane slip limitations.
Rocznik
Strony
293--299
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
  • Gdynia Maritime University, Poland
Bibliografia
  • 1.Mitsui OSK Lines Ltd., (2007). LNG Carrier Operation Technology Text.
  • 2.Hamworthy Gas Systems AS, (2006). QGII QFLEX Operational Manual.
  • 3.Cargo Operating Manual, (2008).
  • 4.McGuire and White, (2008). Liquefied Gas Handling Principles on Ships and in Terminals,SIGGTO, Witherby Publishers.
  • 5.IMO, (2009). Gas Tanker Advanced Course.
  • 6.LNG Custody Transfer Handbook, (2001). G.I.I.G.N.L. DS TML/Z-CG-2001.
  • 7.European Commission, (2016). Methane emissions from LNG-powered ships higher than current marine fuel oils, Science for Environment Policy.
  • 8.Corbett J.J., et al, (2015). Methane Emissions from Natural Gas Bunkering Operations in the Marine Sector: A Total Fuel Cycle Approach, prepared for: US Department of Transportation Maritime Administration.
  • 9.Contessi C., (2013). Gas Engine Emissions, Wärtsilä Dual Engines, Wärtsilä.
  • 10.Wärtsilä, (2017). Tri-fuel Engines, [online] Available at: http://www.intertanko.com/Documents/ISTEC%20LNG%20WG%202015/Maran%20-%20TRI%20FUEL%20ENGINES.pdf [Accessed: 12 June 2017].
  • 11.Baekert M., (2016). LNG as fuel for shipping, Norsk Gassforum, Brussels, DNVGL.
  • 12.World Ocean Review, (2014). Marine Resources - Opportunities and Risks, 3/2014.
  • 13.Morgan Stanley Research, (2013). Natural Gas as a Transportation Fuel Energy.
  • 14.Mokhatab S., et al, (2015). Handbook of natural gas transmission and processing: principles and practices, Elsevier.
  • 15.DeLancey G., (2013). Principles of chemical engineering practice, Wiley.
  • 16.Proceedings of the ASME 35th International Conference on Ocean, Offshore and ArcticEngineering, (2016). Polar and arctic sciences and technology.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-452e18ed-16d6-4db0-89ac-c6f6a60e497e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.