PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Atrial fibrillation detection on electrocardiograms with convolutional neural networks

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Detekcja migotania przedsionków na elektrokardiogramach z wykorzystaniem konwolucyjnej sieci neuronowej
Języki publikacji
EN
Abstrakty
EN
In this paper, we present our research which confirms the suitability of the convolutional neural network usage for the classification of single-lead ECG recordings. The proposed method was designed for classifying normal sinus rhythm, atrial fibrillation (AF), non-AF related other abnormal heart rhythms and noisy signals. The method combines manually selected features with the features learned by the deep neural network. The Physionet Challenge 2017 dataset of over 8500 ECG recordings was used for the model training and validation. The trained model reaches an average F1-score 0.71 in classifying normal sinus rhythm, AF and other rhythms respectively.
PL
W tej pracy, przedstawiamy nasze badania, które potwierdzają przydatność zastosowania konwolucyjnych sieci neuronowych dla klasyfikacji zapisów jedno-odprowadzeniowego EKG. (tak brzmi ta nazwa). Proponowana metoda została zaprojektowana dla klasyfikowania prawidłowego rytmu zatokowego, migotania przedsionków (AF), poza-AF powiązanych z innymi nieprawidłowymi rytmami serca i zaszumionymi (głośnymi?) sygnałami. Ta metoda łączy cechy wyselekcjonowane ręcznie z cechami wyuczonymi przez głębokie sieci neuronowe. Zbiór danych Physionet Challenge 2017 zawierający ponad 8500 zapisów EKG został zastosowany dla modelu szkolenia oraz walidacji. Model nauczony (wyszkolony?) osiąga odpowiednio średni F1-wynik 0.71 w klasyfikowaniu prawidłowego rytmu zatokowego, rytmu AF oraz innych rytmów.
Rocznik
Strony
69--73
Opis fizyczny
Bibliuogr. 23 poz., rys., tab.
Twórcy
autor
  • Ternopil Ivan Puluj National Technical University, Faculty of Computer Information Systems and Software Engineering, Ternopil, Ukraine
  • Ternopil Ivan Puluj National Technical University, Faculty of Computer Information Systems and Software Engineering, Ternopil, Ukraine
autor
  • Ternopil Ivan Puluj National Technical University, Faculty of Applied Information Technologies and Electrical Engineering, Ternopil, Ukraine
Bibliografia
  • [1] AliveCor ECG recording device. https://www.alivecor.com
  • [2] Clifford G, Liu C, Moody B, Silva I, Li Q, Johnson A, Mark. R.: AF classification from a short single lead ECG recording: the PhysioNet Computing in Cardiology challenge 2017. Computing in Cardiology 44, 2017, [DOI: 10.22489/CinC.2017.065-469].
  • [3] Dilaveris P.E., Kennedy H.L.: Silent atrial fibrillation: epidemiology, diagnosis, and clinical impact. Clinical Cardiology 40(6), 413–418, 2017.
  • [4] Hernandez J., Carrasco-Ochoa J.A., Martínez-Trinidad J. F.: An Empirical Study of Oversampling and Undersampling for Instance Selection Methods on Imbalance Datasets. In: Ruiz-Shulcloper J., Sanniti di Baja G. (eds): Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2013. Lecture Notes in Computer Science, vol 8258. Springer, Berlin, Heidelberg 2013, [DOI: 10.1007/978-3-642-41822-8_33]
  • [5] Himanshu S., Kumar J.S.J, Ashok V., Juliet A.V.: Advanced ECG Signal Processing using Virtual Instrument. International Journal on Recent Trends in Engineering & Technology 3(2), 2010, 111-114.
  • [6] Huang J., Chen B., Yao B., He W. ECG Arrhythmia Classification Using STFT-based Spectrogram and Convolutional Neural Network. EEE Access 7, 2019, 92871-92880.
  • [7] Kohler B.-U., Hennig C., Orglmeister R.: The principles of software QRS Detection. IEEE Engineering in Medicine and Biology Magazine 21(1), 2002, 42-57, [DOI: 10.1109/51.993193].
  • [8] Mikhled A., Daqrouq K.: ECG Signal Denoising by Wavelet Transform Thresholding. American Journal of Applied Sciences 5(3), 2008. 276-281.
  • [9] Park J., Lee S., Jeon M.: Atrial fibrillation detection by heart rate variability in Poincare plot. Biomed engineering online 8/38, 2009, 1-12.
  • [10] Petrenas A., Marozas V.: Low-complexity detection of atrial fibrillation in continuous long-term monitoring. Comput in Biology and Medicine 65, 2015, 184-191.
  • [11] Rodenas-Garcia J., Garica M., Alcaraz R., Rieta J.: Wavelet Entropy Automatically Detects Episodes of Atrial Fibrillation from Single-Lead Electrocardiograms. Entropy 17, 2015, 6179-6199, [DOI: 10.3390/e17096179].
  • [12] Simonyan K., Zisserman A.: Very Deep Convolutional Networks for Large-Scale Image Recognition. Inter Conf on Learning Representations (ICLR), 2015. [arXiv preprint arXiv:1409.1556].
  • [13] Tziakouri M., Pitris C., Orphanidou C.: Classification of AF and Other Arrhythmias from a Short Segment of ECG Using Dynamic Time Warping. Comp in Cardio, 2017, 1-4.
  • [14] Velayudhan A., Peter S.: Noise Analysis and Different Denoising Techniques of ECG Signal – A Survey. IOSR Journal of Electronics and Communication Engineering, 2016, 40-44
  • [15] Wang Z., Wan F., Wong C.M., Zhang L.: Adaptive Fourier decomposition based ECG denoising. Computers in Biology and Medicine 77, 2016, 195–205.
  • [16] https://keras.io Keras documentation (available: 19.07.2019).
  • [17] https://numpy.org NumPy official documentation (available 01.07.2019).
  • [18] https://scikit-learn.org Scikit-Learn official website (available: 01.07.2019).
  • [19] https://www.python.org Python programming language (available 30.06.2019).
  • [20] https://www.scipy.org SciPy official documentation (available 01.07.2019).
  • [21] https://www.tensorflow.org Tensorflow official page (available: 19.07.2019).
  • [22] OMRON HCG801 HearnScan ECG recorder. https://www.omron-healthcare.com/en/products/electrocardiograph
  • [23] WIWE ECG recording device. https://shop.mywiwe.com/en/ecg-recording-105
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-452273ac-33a6-4ede-95f5-64ed299892be
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.