Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Financial capability is one of the primary drivers for buyers to make purchases. Therefore, sellers must set an optimum selling price and consider trade credit facilities to attract more demand. This paper proposes an inventory decision model in which customer demand depends on the price and number of credit installments to serve low-abled buyers. This study has developed a demand function with a positive impact on installment policies and the effect of the selling price. Two models have been formulated to optimize the selling price and positive stock time, m total profit, with and without installment policies. Then, numerical examples and sensitivity analysis illustrate the proposed model for different cases. The study has found that the selling price and positive stock time can be optimized. Profits can be higher in the case of an installment facility than in the case without an installment facility. It shows positive responses from the buyer to the installment policy.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
111--127
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
autor
- Hajee Mohammad Danesh Science and Technology University Department of Mathematics Dinajpur-5200, Bangladesh
- Division of Engineering Management and Decision Sciences College of Science and Engineering Hamad Bin Khalifa University, Doha, Qatar
autor
- Hajee Mohammad Danesh Science and Technology University Department of Mathematics Dinajpur-5200, Bangladesh
autor
- Hajee Mohammad Danesh Science and Technology University Department of Mathematics Dinajpur-5200, Bangladesh
autor
- Hajee Mohammad Danesh Science and Technology University Department of Mathematics Dinajpur-5200, Bangladesh
autor
- Department of Industrial Engineering Universitas Atma Jaya Yogyakarta, Indonesia
Bibliografia
- [1] A.H.M. Mashud, M.R. Hasan, Y. Daryanto, H.M. Wee. “A resilient hybrid payment supply chain inventory model for post COVID-19 recovery.” Computers and Industrial Engineering, vol. 157, 107249, 2021. DOI: 10.1016/j.cie.2021.107249
- [2] S.K. Goyal. “Economic order quantity under conditions of permissible delay in payments.” Journal of the Operational research Society, vol. 36, pp. 335-338, 1985. DOI: 10.2307/2582421
- [3] S. Chand, J. Ward. “A note on economic order quantity under conditions of permissible delay in payments.” Journal of the Operational Research Society, vol. 38, pp. 83-84, 1987. DOI: 10.1057/jors.1987.10
- [4] A.H.M. Mashud, M.R. Hasan, Y. Daryanto, H.M. Wee. “Non-instantaneous deteriorating inventory model under the joined effect of trade-credit, preservation technology and advertisement policy.” Kybernetes, vol. 49, no. 6, 1645-1674, 2020. DOI: 10.1108/K-05-2019-0357.
- [5] J. Heydari, M. Rastegar, C.H. Glock. “A two-level delay in payments contract for supply chain coordination: The case of credit-dependent demand.” International Journal of Production Economics, vol. 191, pp. 26-36, 2017. DOI: 10.1016/j.ijpe.2017.05.004
- [6] B. Marchi, S. Zanoni, M.Y. Jaber. “Credit-dependent demand in a vendor-buyer model with a two-level delay-in-payments contract under a consignment-stock policy agreement.” Applied Mathematical Modelling, vol. 99, pp. 585-605, 2021. DOI: 10.1016/j.apm.2021.07.002
- [7] G. Bi, P. Wang, D. Wang, Y. Yin. “Optimal credit period and ordering policy with credit-dependent demand under two-level trade credit.” International Journal of Production Economics, vol. 242, 108311, 2021. DOI: 10.1016/j.ijpe.2021.108311
- [8] H. Polatoglu, I. Sahin. “Optimal procurement policies under price dependent demand.” International Journal of Production Economics, vol. 65, no. 2, pp. 141-171, 2000. DOI: 10.1016/S0925-5273(98)00240-0
- [9] A.H.M. Mashud. “An EOQ deteriorating inventory model with different types of demand and fully backlogged shortages.” International Journal of Logistic Systems & Management, vol. 36, pp. 16-45, 2020. DOI: 10.1504/IJLSM.2020.10016452
- [10] M.R. Hasan, A.H.M. Mashud, Y. Daryanto, H.M. Wee. “A non-instantaneous inventory model of agricultural products considering deteriorating impacts and pricing policies.” Kybernetes, vol. 50, no. 8, 2264-2288, 2021. DOI: 10.1108/K-05-2020-0288
- [11] S. Pal, G.S. Mahapatra, G.P. Samanta. “An inventory model of price and stock dependent demand rate with deterioration under inflation and delay in payment.” International Journal of System Assurance Engineering and Management, vol, 5, pp. 591-601, 2014. DOI: 10.1007/s13198-013-0209-y
- [12] V. Pando, L.A. San-José, J. Sicilia, D. Alcaide-López-de-Pablo. “Maximization of the return on inventory management expense in a system with price – and stock-dependent demand rate.” Computers and Operations Research, vol. 127, 105134, 2021. DOI: 10.1016/j.cor.2020.105134
- [13] M.R. Hasan, A.H.M. Mashud. “An economic order quantity model for decaying products with the frequency of advertisement, selling price and continuous time dependent demand under partially backlogged shortage.” International Journal of Supply and Operations Management, vol. 6, no. 4, pp. 296-314, 2019. DOI: 10.22034/2019.4.2
- [14] L.A. San-José, J. Sicilia, B. Abdul-Jalbar. “Optimal policy for an inventory system with demand dependent on price, time and frequency of advertisement.” Computers and Operations Research, vol. 128, 105169, 2021. DOI: 10.1016/j.cor.2020.105169
- [15] R. Maihami, I. Nakhai-Kamalabadi. “Joint pricing and inventory control for non-instantaneous deteriorating items with partial backlogging and time and price dependent demand.” International Journal of Production Economics, vol. 136, pp. 116-122, 2011. DOI: 10.1016/j.ijpe.2011.09.020
- [16] L. Wang, J. Tian, W. Si, X. Sun. “Optimal duration, rate and price when online retailers offer installment payment services.” Nankai Business Review International, vol. 12, no. 1, pp. 96-121, 2021. DOI: 10.1108/NBRI-08-2019-0039
- [17] P.K. Ghosh, A.K. Manna, J.K. Dey, S. Kar. “An EOQ model with backordering for perishable items under multiple advanced and delayed payments policies.” Journal of Management Analytics, 2021, DOI: 10.1080/23270012.2021.1882348
- [18] W. Harris. “How many parts to make at once.” Factory: The Magazine of Management, vol. 10, pp. 135-136, 1913.
- [19] M. Resh, M. Friedman, L.C. Barbosa. “On a general solution of the deterministic lot size problem with time proportional demand.” Operations Research, vol. 24, no. 4, pp. 718-725, 1976. DOI: 10.1287/opre.24.4.718
- [20] V. Kim, H. Huang, S.W. Shinn. “An optimal credit policy to increase supplier’s profits with price-dependent demand functions.” Production Planning and Control, vol. 6, no. 1, pp. 45-50, 1995. DOI: 10.1080/09537289508930252
- [21] J.G. Szmerekovsky, V. Tilson, J. Zhang. “Analytical model of adoption of item level RFID in a two-echelon supply chain with shelf-space and price-dependent demand.” Decision Support System, vol. 51, no. 4, pp. 833-841, 2011. DOI: 10.1016/j.dss.2c011.02.002
- [22] A.K. Sahoo, S.K. Indrajitsingha, P.N. Samanta, U.K. Misra. “Selling price dependent demand with allowable shortages model under partially backlogged-deteriorating items.” International Journal of Applied and Computational Mathematics, vol. 5, 104, 2019 DOI: 10.1007/s40819-019-0670-7
- [23] M. Pour-Massahian-Tafti, M. Godichaud, L. Amodeo. “Disassembly EOQ models with price-sensitive demands.” Applied Mathematical Modelling, vol. 88, pp. 810-826, 2020. DOI: 10.1016/j.apm.2020.06.011
- [24] R.M. van Steenbergen, M.R.K. Mes. “Forecasting demand profiles of new products.” Decision Support System, 139, 113401, 2020. DOI: 10.1016/j.dss.2020.113401
- [25] C.H. Glock, E.H. Grosse, J.M. Ries. “The lot sizing problem: a tertiary study.” International Journal of Production Economics, vol. 155, pp. 39-51, 2014. DOI: 10.1016/j.ijpe.2013.12.009
- [26] Z. Molamohamadi, M. Rezaeiahari, N. Ismail. “Consignment inventory: review and critique of literature.” Journal of Basic and Applied Scientific Research, vol. 3, no. 6, pp. 707-714, 2013.
- [27] D. Jain, K.K. Aggarwal. “The effect of inflation-induced demand and trade credit on ordering policy of exponentially deteriorating and imperfect quality items.” International Transactions in Operation Research, vol. 19, no. 6, pp. 863-889, 2012. DOI: 10.1111/j.1475-3995. 2012.00849.x
- [28] C.K. Jaggi, V.S.S. Yadavalli, M. Verma, A. Sharma. “An EOQ model with allowable shortage under trade credit in different scenario.” Applied Mathematics and Computation, vol. 252, pp. 541-55, 2015. DOI: 10.1016/j.amc.2014.12.040
- [29] K.V. Geetha, R. Uthayakumar. “Economic design of an inventory policy for non-instantaneous deteriorating items under permissible delay in payments.” Journal of Computational and Applied Mathematics, vol. 223, pp. 2492-2505, 2010. DOI: 10.1016/j.cam.2009.10.031
- [30] M. Ghoreishi, G.W. Weber, A. Mirzazadeh. “An inventory model for non-instantaneous deteriorating items with partial backlogging, permissible delay in payments, inflation- and selling price-dependent demand and customer returns.” Annals of Operational Research, vol. 226, pp. 221-238, 2015. DOI: 10.1007/s10479-014-1739-7.
- [31] Y. Zhou, C. Chen, C. Li, Y. Zhong. “A synergic economic order quantity model with trade credit, shortages, imperfect quality and inspection errors." Applied Mathematical Modelling, vol. 40, no. 2, pp. 1012-1028, 2016. DOI: 10.1016/j.apm.2015.06.020
- [32] D.J. Mohanty, R.S. Kumar, A. Goswami. “Trade-credit modeling for deteriorating item inventory system with preservation technology under random planning horizon.” Sādhanā, vol. 43, 45, 2018. DOI: 10.1007/s12046- 0180807-0
- [33] S. Makoena, A. Olufemi. “Economic order quantity model for growing items with incremental quantity discounts.” Journal of Industrial Engineering International, vol. 15, pp. 545-556, 2019. DOI: 10.1007/s40092-019-0311-0
- [34] M.R. Hasan, Y. Daryanto, T.C. Roy, Y. Feng. “Inventory management with online payment and preorder discounts.” Industrial Management and Data System, vol. 120, pp. 2001-2023, 2020. DOI: 10.1108/IMDS-05-2020- 0314
- [35] H.K. Alfares, A.M. Ghaithan. ”Inventory and pricing model with price-dependent demand, time-varying holding cost, and quantity discounts.” Computers and Industrial Engineering, vol. 94, pp. 170-177, 2016. DOI: 10.1016/j.cie.2016.02.009
- [36] T.Y. Lin. “An economic order quantity with imperfect quality and quantity discounts.” Applied Mathematical Modelling, vol. 34, pp. 3158-3165, 2010. DOI: 10.1016/j.apm.2010.02.004
- [37] Z. Molamohamadi, R. Arshizadeh, N. Ismail, A. Azizi. “An economic order quantity model with completely backordering and nondecreasing demand under two-level trade credit.” Advances in Decision Sciences, 340135, 2014. DOI: 10.1155/2014/340135
- [38] A.A. Shaikh, M.A. Khan, G.C. Panda, I. Konstantaras. “Price discount facility in an EOQ model for deteriorating items with stock-dependent demand and partial backlogging.” International Transactions in Operational Research, vol. 26, no. 4, pp. 1365-1395, 2019. DOI: 10.1111/itor.12632
- [39] A.A. Shaikh, A.H.M. Mashud, M.S. Uddin, A.A. Khan. “Noninstantaneous deterioration inventory model with price and stock dependent demand for fully backlogged shortages under inflation.” International Journal of Business Forecasting and Marketing Intelligence, vol. 3, no. 2, pp. 152-164, 2017. DOI: 10.1504/IJBFMI.2017.10004828
- [40] Z.M. Teksan, J. Geunes. “An EOQ model with price-dependent supply and demand.” International Journal of Production Economics, vol. 178, pp. 22-33, 2016. DOI: 10.1016/j.ijpe.2016.04.023
- [41] R.P. Tripathi, N. Sang. EOQ model for constant demand rate with completely backlogged and shortages. Journal of Applied & Computational Mathematics, vol. 1, no. 6, pp. 1- 4, 2012. DOI: 10.4172/2168-9679.1000121.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4520cbc5-40b4-4747-9d9a-f9a23e13014c