Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Thermal-imaging systems respond to infrared radiation that is naturally emitted by objects. Various multispectral and hyperspectral devices are available for measuring radiation in discrete sub-bands and thus enable a detection of differences in a spectral emissivity or transmission. For example, such devices can be used to detect hazardous gases. However, their operation principle is based on the fact that radiation is considered a scalar property. Consequently, all the radiation vector properties, such as polarization, are neglected. Analysing radiation in terms of the polarization state and the spatial distribution of thereof across a scene can provide additional information regarding the imaged objects. Various methods can be used to extract polarimetric information from an observed scene. We briefly review architectures of polarimetric imagers used in different wavebands. First, the state-of-the-art polarimeters are presented, and, then, a classification of polarimetric-measurement devices is described in detail. Additionally, the data processing in Stokes polarimeters is given. Emphasis is laid on the methods for obtaining the Stokes parameters. Some predictions in terms of LWIR polarimeters are presented in the conclusion.
Wydawca
Czasopismo
Rocznik
Tom
Strony
5--12
Opis fizyczny
Bibliogr. 34 poz., rys., fot., tab.
Twórcy
autor
- Institute of Optoelectronics, Military University of Technology, 2 gen. S. Kaliskiego St., 00-908 Warsaw, Poland
autor
- Institute of Optoelectronics, Military University of Technology, 2 gen. S. Kaliskiego St., 00-908 Warsaw, Poland
autor
- Institute of Optoelectronics, Military University of Technology, 2 gen. S. Kaliskiego St., 00-908 Warsaw, Poland
Bibliografia
- [1] Tyo, S. J., Goldstein, D. L., Chenault, D. B. & Shaw, J. A. Review of passive imaging polarimetry for remote sensing applications. Appl. Opt. 45, 5453–5469 (2006). https://doi.org/10.1364/AO.45.005453
- [2] Kudenov, M. W., Pezzaniti, J. L. & Gerhart, G. R. Microbolometer-infrared imaging Stokes polarimeter. Opt. Eng. 48, 063201 (2009). https://doi.org/10.1117/1.3156844
- [3] Harchanko, J. S., Pezzaniti, L., Chenault, D. & Eades, G. Comparing a MWIR and LWIR polarimetric imager for surface swimmer detection. Proc. SPIE 6945, 69450X (2008). https://doi.org/10.1117/12.778061
- [4] Kudenov, M. W., Dereniak, E. L., Pezzaniti, L. & Gerhart, G. R. 2-Cam LWIR imaging Stokes polarimeter. Proc. SPIE 6972, 69720K (2008). https://doi.org/10.1117/12.784796
- [5] Rodenhuis, M., Canovas, H., Jeffers, S. V. & Keller, C. U. The Extreme Polarimeter (ExPo): design of a sensitive imaging polarimeter. Proc. SPIE 7014, 70146T (2008). https://doi.org/10.1117/12.788439
- [6] van Holstein, R. et al. Combining angular differential imaging and accurate polarimetry with SPHERE/IRDIS to characterize young giant exoplanets. Proc. SPIE 10400, 1040015 (2017). https://doi.org/10.1117/12.2272554
- [7] Rotbøll, J., Søbjærg, S. & Skou, N. A novel L-Band polarimetric radiometer featuring subharmonic sampling. Radio Sci. 38, 1-7 (2003). https://doi.org/10.1029/2002RS002666
- [8] Yueh, S. H. Modeling of wind direction signals in polarimetric sea surface brightness temperatures. IEEE Trans. Geosci. Remote Sensing 35, 1400-1418 (1997). https://doi.org/10.1109/36.649793
- [9] Laymon, C. et al. MAPIR: An airborne polarimetric imaging radiometer in support of hydrologic satellite observations. in IEEE Geoscience and Remote Sensing Symposium 26-30 (2010).
- [10] Coulson, K. L., Gray, E. L. & Bouricius, G. M. A study of the reflection and polarization characteristics of selected natural and artificial surfaces. Tech. Informat. Series Rep. R64SD74. (General Electric Co., Missile and Space Div., Space Sciences Lab., 1964)
- [11] Lafrance, B. & Herman, M. Correction of the Stratospheric Aerosol Radiative Influence in the POLDER Measurements. IEEE Trans. Geosci. Remote Sensing 36, 1599-1608 (1998). https://doi.org/10.1109/36.718863
- [12] Hooper, B. A., Baxter, B., Piotrowski, C., Williams, J. Z. & Dugan, J. An airborne imaging multispectral polarimeter (AROSS-MSP). in Oceans 2009, 1-10 (2009). https://doi.org/10.23919/OCEANS.2009.5422152
- [13] Giakos, G. C. et al. Near infrared light interaction with lung cancer cells. in 2011 IEEE International Instrumentation and Measurement Technology Conference 1-6 (2011). https://doi.org/10.1109/IMTC.2011.5944333
- [14] Sobczak, M., Kurzynowski, P., Woźniak, W., Owczarek, M. & Drobczyński, S. Polarimeter for measuring the properties of birefringent media in reflective mode. Opt. Express 28, 249–257 (2020). https://doi.org/10.1364/OE.380998
- [15] Sadjadi, F. Electro-Optical Systems for Image Recognition. LEOS 2001. 14th Annual Meeting of the IEEE Lasers and Electro-Optics Society (Cat. No.01CH37242) vol. 2 550-551 (2001). https://doi.org/10.1109/LEOS.2001.968933
- [16] Bieszczad, G., Gogler, S. & Krupiński, M. Polarization state imaging in long-wave infrared for object detection. Proc. SPIE 8897, 88970R (2013). https://doi.org/10.1117/12.2028858
- [17] Gurton, K. P. & Felton, M. Remote detection of buried land-mines and IEDs using LWIR polarimetric imaging. Opt. Express 20, 22344-22359 (2012). https://doi.org/10.1364/OE.20.022344
- [18] Więcek, B. & De Mey, G. Termowizja w podczerwieni. Podstawy i zastosowania. (Warszawa: Wydawnictwo Pomiary Automatyka Kontrola, 2011). [in Polish]
- [19] Rogalski, A. Infrared detectors. (Amsterdam: Gordon and Breach Science Publishers, 2000).
- [20] Chenault, D., Foster, J., Pezzaniti, L., Harchanko, J. & Aycock, T. Polarimetric sensor systems for airborne ISR. Proc. SPIE 9076, 90760K (2014). https://doi.org/10.1117/12.2053918
- [21] Holtsberry, B. L. & Voelz, D. G. Material identification from remote sensing of polarized self-emission. Proc. SPIE 11132, 1113203 (2019). https://doi.org/10.1117/12.2528282
- [22] Madura, H., Pomiary termowizyjne w praktyce : praca zbiorowa. (Agenda Wydawnicza PAKu, 2004). [in Polish]
- [23] Baas, M., Handbook of Optics. (New York: McGraw-Hill, 1995).
- [24] Eriksson, J., Bergström, D. & Renhorn, I. Characterization and performance of an LWIR polarimetric imager. Proc. SPIE 10434, 1043407 (2017). https://doi.org/10.1117/12.2278502
- [25] Gogler, S., Bieszczad, G. & Swiderski, J. Method of signal processing in a time-division LWIR image polarimetric sensor. Appl. Opt. 59, 7268-7278 (2020). https://doi.org/10.1364/AO.396675
- [26] Cremer, F., de Jongm, W. & Schutte, K. Infrared polarization measurements and modeling applied to surface-laid antipersonnel landmines. Opt. Eng. 41, 1021–1032 (2002). https://doi.org/10.1117/1.1467362
- [27] Pezzaniti, L. J. & Chenault, D. B. A divison of aperture MWIR imaging polarimeter. Proc. SPIE 5888, 58880 (2005). https://doi.org/10.1117/12.623543
- [28] Chun, C. S. L., Fleming, D. L., Harvey, W. A. & Torok, E. J. Target discrimination using a polarization sensitive thermal imaging sensor. Proc. SPIE 3062, 60-67 (1997). https://doi.org/10.1117/12.327165
- [29] Moxtek. https://moxtek.com/ (2020).
- [30] Stokes, R. J., Normand, E. L., Carrie, I. D., Foulger, B. & Lewis, C. Develepment of a QCL based IR polarimetric system for the stand-off detection and location of IEDs. Proc. SPIE 7486, 748609 (2009). https://doi.org/10.1117/12.830076
- [31] Chenault D. B., Vaden, J. P., Mitchell, D. A. & Demicco, E. D. New IR polarimeter for improved detection of oil on water. SPIE Newsroom (2017). https://doi.org/10.1117/2.1201610.006717
- [32] Tyo, S. J. & Turner, T. S. Variable-retardance, Fourier-transform imaging spectropolarimeters for visible spectrum remote sensing. Appl. Opt. 40, 1450-1458 (2001). https://doi.org/10.1364/AO.40.001450
- [33] Craven-Jones, J., Way, B. M., Hunt, J., Kudenov, M. W. & Mercier, J. A. Thermally stable imaging channeled spectropolari-metry. Proc. SPIE 8873, 88730J (2013). https://doi.org/10.1117/12.2024112
- [34] Smith, M. H., Woodruff, J. B. & Howe, J. D. Beam wander considerations in imaging polarimetry. Proc. SPIE 3754, 50–54 (1999). https://doi.org/10.1117/12.366359
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4511e6a3-df33-4581-88ed-b23611fd1218