Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The concrete structures under impact loading duress may be destroyed within an extremely short period of time. The importance and complexity of exploration on the impact resistance of concrete members make this area still open for discussion. In the present study, a 3-D mesoscale numerical model was established to investigate the effect of the combination of impact mass and velocity on the mechanical behavior of reinforced concrete (RC) beams subjected to impact loadings. Heterogeneity of concrete and strain rate effects of concrete and steel bars were taken into account. Furthermore, nonlinear interaction between the concrete and steel bars was considered herein. Results from macroscale and mesoscale simulation were compared with the available physical tests, indicating that the mesoscale numerical model can better represent the influence of heterogeneity of concrete on the mechanical behavior of RC beams. Five different impact energy levels were involved to study the effect of the combination of impact mass and velocity on the impact resistance of RC beams. At last, the residual bearing capacity and natural frequency of impacted RC beams were numerically calculated and their relationship was discussed. It is indicated that the deformation of RC beams is influenced strongly by the impulse, which increases with the increasing impact mass at identical impact energy. Besides, the failure mode of RC beams turns from shear-dominant failure mode to bending shear failure mode with the increase of impact mass, accompanied by the increase of energy dissipation of steel bars and the whole member. Despite this, in the present work, the combination of the impact mass and velocity had little influence on the damage extent (based on the performance) of the RC beams. Moreover, an empirical relationship between the residual bearing capacity and the natural frequency of the impacted RC beams was established as a rough reference for damage evaluation in engineering practice.
Czasopismo
Rocznik
Tom
Strony
308--328
Opis fizyczny
Bibliogr. 67 poz., rys., wykr.
Twórcy
autor
- Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China
autor
- Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China
autor
- Department of Civil Engineering, Tsinghua University, Beijing 100084, China
autor
- Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China
Bibliografia
- [1] Hingorani R, Tanner P, Zanuy C. Life safety risk-based requirements for concrete structures in accidental situations caused by gas explosions. Struct Saf. 2019;76:184–96.
- [2] Liao W, Li M, Zhang W, Tian Z. Experimental studies and numerical simulation of behavior of RC beams retrofitted with HSSWMHPM under impact loading. Eng Struct. 2017;149:131–46.
- [3] Fujikake K, Li B, Soeun S. Impact response of reinforced concrete beam and its analytical evaluation. J Struct Eng. 2009;135(8):938–50.
- [4] Yoo D, Banthia N, Kim S, Yoon Y. Response of ultra-high-performance fiber-reinforced concrete beams with continuous steel reinforcement subjected to low-velocity impact loading. Campos Struct. 2015;126:233–45.
- [5] Pham TM, Hao H. Influence of global stiffness and equivalent model on prediction of impact response of RC beams. Int J Impast Eng. 2018;113:88–97.
- [6] Anil Ö, Durucan C, Erdem RT, Yorgancilar MA. Experimental and numerical investigation of reinforced concrete beams with variable material properties under impact loading. Constr Build Mater. 2016;125:94–104.
- [7] Guo J, Cai J, Chen Q, Liu X, Wang Y, Zuo Z. Dynamic behaviour and energy dissipation of reinforced recycled aggregate concrete beams under impact. Constr Build Mater. 2019;214:143–57.
- [8] Li Z, Khennane A, Hazell PJ, Remennikov AM. Performance of a hybrid GFRP-concrete beam subject to low-velocity impacts. Compos Struct. 2018;206:425–38.
- [9] Saini D, Shafei B. Investigation of concrete-filled steel tube beams strengthened with CFRP against impact loads. Compos Struct. 2019;208:744–57.
- [10] Zhang J, Ye Y, Qin Q, Wang T. Low-velocity impact of sandwich beams with fibre-metal laminate face-sheets. Compos Sci Technol. 2018;168:152–9.
- [11] Abo Sabah SH, Kueh ABH, Al-Fasih MY. Bio-inspired vs. conventional sandwich beams: a low-velocity repeated impact behavior exploration. Constr Build Mater. 2018;169:193–204.
- [12] Pham TM, Hao H. Plastic hinges and inertia forces in RC beams under impact loads. Int J Impact Eng. 2017;103:1–11.
- [13] Pham TM, Hao H. Effect of the plastic hinge and boundary conditions on the impact behavior of reinforced concrete beams. Int J Impact Eng. 2017;102:74–85.
- [14] Zhan T, Wang Z, Ning J. Failure behaviors of reinforced concrete beams subjected to high impact loading. Eng Fail Anal. 2015;56:233–43.
- [15] Saleh Z, Sheikh MN, Remennikov A, Basu A. Damage assessment of GFRP bar reinforced ultra-high-strength concrete beams under overloading impact conditions. Eng Struct. 2020;213:110581.
- [16] Wu M, Chen Z, Zhang C. Determining the impact behavior of concrete beams through experimental testing and meso-scale simulation: I. Drop-weight tests. Eng Fract Mech. 2015;135:94–112.
- [17] Li H, Chen W, Hao H. Dynamic response of precast concrete beam with wet connection subjected to impact loads. Eng Struct. 2019;191:247–63.
- [18] Jin L, Xu J, Zhang R, Du X. Numerical study on the impact performances of reinforced concrete beams: a mesoscopic simulation method. Eng Fail Anal. 2017;80:141–63.
- [19] Yu YJ, Kim C, Cho J. Investigation of behavior of RC beams subjected to impact loading considering combination of mass and impact velocity. Procedia Eng. 2017;210:353–9.
- [20] Li H, Chen W, Hao H. Numerical study of precast concrete beam under impact loads. In: Wang C, Ho J, Kitipornchaieditors S, editors. Lecture Notes in Civil Engineering. Brisbane: Springer, Singapore; 2020.
- [21] Zhao W, Qian J, Zhang W. Performance and damage evaluation of RC beams under impact loading. Explos Shock Waves. 2019;39(1):015102 [In Chinese].
- [22] Shi Y, Hao H, Li Z. Numerical derivation of pressure-impulse diagrams for prediction of RC column damage to blast loads. Int J Impact Eng. 2008;35:1213–27.
- [23] Wei J, Li J, Wu C. An experimental and numerical study of reinforced conventional concrete and ultra-high performance concrete columns under lateral impact loads. Eng Struct. 2019;201:109822.
- [24] Glabisz W, Jarczewska K, Hołubowski R. Stability of Timoshenko beams with frequency and initial stress dependent nonlocal parameters. Arch Civ Mech Eng. 2019;19(4):1116–26.
- [25] Civalek Ö, Uzun B, Yaylı MÖ, Akgöz B. Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method. Eur Phy J Plus. 2020;135(4):381.
- [26] Akgöz B, Civalek Ö. Buckling analysis of functionally graded microbeams based on the strain gradient theory. Acta Mech. 2013;224(9):2185–201.
- [27] Demir Ç, Civalek Ö. Torsional and longitudinal frequency and wave response of microtubules based on the nonlocal continuum and nonlocal discrete models. Appl Math Model. 2013;37(22):9355–67.
- [28] Xiong Q, Wang X, Jivkov AP. A 3D multi-phase meso-scale model for modelling coupling of damage and transport properties in concrete. Cem Concr Compos. 2020;2020:103545. https ://doi.org/10.1016/j.cemco ncomp .
- [29] Wu M, Zhang C, Chen Z. Determining the impact behavior of concrete beams through experimental testing and meso-scale simulation: II. Particle element simulation and comparison. Eng Fract Mech. 2015;135:113–25.
- [30] Jiang H, Chorzepa MG. An effective numerical simulation methodology to predict the impact response of pre-stressed concrete members. Eng Fail Anal. 2015;55:63–78.
- [31] Dou G, Du X, Li L. Experimental study on the behavior of high strength reinforced concrete beams under impact load. J Tianjin Univ (Sci Technol). 2014;47(12):1072–80 [in Chinese].
- [32] Chen H, Xu B, Mo YL, Zhou T. Behavior of meso-scale heterogeneous concrete under uniaxial tensile and compressive loadings. Constr Build Mater. 2018;178:418–31.
- [33] Ma H, Xu W, Li Y. Random aggregate model for mesoscopic structures and mechanical analysis of fully-graded concrete. Comput Struct. 2016;177:103–13.
- [34] Jin L, Lan Y, Zhang R, Du X. Impact performances of RC beams at/after elevated temperature: a meso-scale study. Eng Fail Anal. 2019;105:196–21414.
- [35] Fuller WB, Thompson SE. The laws of proportioning concrete. Trans ASCE. 1907;59:67–143.
- [36] Chen C, Zhang Q, Keer LM, Yao Y, Huang Y. The multi-factor effect of tensile strength of concrete in numerical simulation based on the Monte Carlo random aggregate distribution. Constr Build Mater. 2018;165:585–95.
- [37] Li G, Yu J, Cao P, Ren Z. Experimental and numerical investigation on I–II mixed-mode fracture of concrete based on the Monte Carlo random aggregate distribution. Constr Build Mater. 2018;191:523–34.
- [38] Ollivier JP, Maso JC, Bourdette B. Interfacial transition zone in concrete. Adv Cem Based Mater. 1995;2(1):30–8.
- [39] Unger JF, Eckardt S. Multiscale modeling of concrete: from mesoscale to macroscale. Arch Comput Method E. 2011;18(3):341–93.
- [40] Ma HF, Xu WX, Zhou JK, Chen HQ. Mesoscopic insight into the damage mechanism for the static preload effect on dynamic tensile strength of concrete. J Mater Civil Eng. 2019;31(2):04018390.
- [41] Wang Y, Peng YJ, Kamel MMA, Ying LP. Mesomechanical properties of concrete with different shapes and replacement ratios of recycled aggregate based on base force element method. Struci Concrete. 2019;20:1425–37.
- [42] Huang Z. Modelling the bond between concrete and reinforcing steel in a fire. Eng Struct. 2010;32(11):3660–9.
- [43] Huang YJ, Yang ZJ, Chen XW, Liu GH. Monte Carlo simulations of meso-scale dynamic compressive behavior of concrete based on X-ray computed tomography images. Int J Impact Eng. 2016;97:102–15.
- [44] Grote DL, Park SW, Zhou M. Dynamic behavior of concrete at high strain rates and pressures: I. Experimental characterization. Int J Impact Eng. 2001;25(9):869–86.
- [45] Park SW, Xia Q, Zhou M. Dynamic behavior of concrete at high strain rates and pressures: II. Numerical simulation. Int J Impact Eng. 2001;25(9):887–910.
- [46] Zhou XQ, Hao H. Modelling of compressive behaviour of concrete-like materials at high strain rate. Int J Solids Struct. 2008;45(17):4648–61.
- [47] Tang L, Zhou W, Liu X, Ma G, Chen M. Three-dimensional mesoscopic simulation of the dynamic tensile fracture of concrete. Eng Fract Mech. 2019;211:269–81.
- [48] Zhou W, Zhao C, Liu X, Chang X, Feng C. Mesoscopic simulation of thermo-mechanical behaviors in concrete under frost action. Constr Build Mater. 2017;157:117–31.
- [49] Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Code for design of concrete structures. GB 50010-2010. Beijing: China Architecture and Building Press; 2010.
- [50] Jin L, Zhang R, Tian Y, Dou G, Du X. Experimental investigation on static and dynamic mechanical properties of steel fiber reinforced ultra-high-strength concretes. Constr Build Mater. 2018;178:102–11.
- [51] Hao Y, Hao H. Influence of the concrete DIF model on the numerical predictions of RC wall responses to blast loadings. Eng Struct. 2014;73:24–38.
- [52] Malvar LJ, Ross CA. Review of strain rate effects for concrete in tension. ACI Mater J. 1998;95(6):735–9.
- [53] Malvar LJ. Review of static and dynamic properties of steel reinforcing bars. ACI Mater J. 1998;95(5):609–14.
- [54] Euro-International Committee for Concrete. CEB-fip model code 2010, Fib Bulletin 55. Lausanne, Switzerland; 2010.
- [55] Comité Euro-International Du Béton. Concrete structures under impact and impulsive loading, CEB Bulletin No. 187. Lausanne, Switzerland: The Committee; 1988.
- [56] Villavicencio R, Guedes SC. Numerical modelling of the boundary conditions on beams stuck transversely by a mass. Int J Impact Eng. 2011;38(5):384–96.
- [57] Li H, Chen W, Hao H. Influence of drop weight geometry and interlayer on impact behavior of RC beams. Int J Impact Eng. 2019;131:222–37.
- [58] Zeinoddini M, Harding JE, Parke GAR. Axially pre-loaded steel tubes subjected to lateral impacts (a numerical simulation). Int J Impact Eng. 2008;35(11):1267–79.
- [59] Thai D, Kim S. Numerical simulation of pre-stressed concrete slab subjected to moderate velocity impact loading. Eng Fail Anal. 2017;79:820–35.
- [60] Thilakarathna HMI, Thambiratnam DP, Dhanasekar M, Perera N. Numerical simulation of axially loaded concrete columns under transverse impact and vulnerability assessment. Int J Impact Eng. 2010;37(11):1100–12.
- [61] Abaqus 6.14 user’s manual. Dassault Systemes Simulia Corporation, USA, 2014.
- [62] Xiao J, Li L, Shen L, Poon CS. Compressive behaviour of recycled aggregate concrete under impact loading. Cem Concr Res. 2015;71:46–55.
- [63] Fan W, Liu B, Huang X, Sun Y. Efficient modeling of flexural and shear behaviors in reinforced concrete beams and columns subjected to low-velocity impact loading. Eng Struct. 2019;195:22–50.
- [64] Zhang L, Yin X, Yang J, Wang H, Deng Q, Yu B, et al. Transient impact response analysis of an elastic–plastic beam. Appl Math Model. 2018;55:616–36.
- [65] Cotsovos DM, Stathopoulos ND, Zeris CA. Behavior of RC beams subjected to high rates of concentrated loading. J Struct Eng. 2008;134(12):1839–51.
- [66] Wang B, Zhu H, Wu X, Zhang N, Yan B. Numerical investigation on low-velocity impact response of CFRP wraps in presence of concrete substrate. Compos Struct. 2020;231:111541.
- [67] Wang W, Wu C, Li J, Liu Z, Lv Y. Behavior of ultra-high performance fiber-reinforced concrete (UHPFRC) filled steel tubular members under lateral impact loading. Int J Impact Eng. 2019;132:103314.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-450daba1-8289-4b1e-b82f-8cab10d7b09b