PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analytical and numerical flexural properties of polymeric porous functionally graded (PFGM) sandwich beams

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Materials with porosity gradient functionally gradient properties reflect changes in the material's position spatially in response to changes in porosity. One porous metal comprised the FGM core and had not previously been considered in bending analyses. Design/methodology/approach: Analytical formulations were derived based on the classical beam theory (CBT). According to the power-law scheme, the material properties of FG beams are supposed to vary along the thickness direction of the constituents. Findings: The results show that the porosity and power gradient parameters significantly influence flexural bending characteristics. It is found that there is a fair agreement between the analytical and numerical results, with a maximum error percentage not exceeding 5%. Research limitations/implications: The accuracy of analytical solutions is verified by employing the finite elements method (FEM) with commercial ANSYS 2021 R1 software. Practical implications: FGM beams' elastic properties with an even porosity distribution through-beam core and bonded with two thin solid skins at the upper and lower surfaces were carried out. Originality/value: This paper develops an analytical study to investigate the flexural problem of a functionally graded simply supported sandwich beam with porosities widely used in aircraft structures and biomedical engineering. The objective of the current work is to examine the effects of some key parameters, such as porous ratio, power-law index, and core metal type, on the flexural properties such as bending load, total deformation, and strain energy.
Rocznik
Strony
5--15
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
autor
  • Mechanical Engineering Department, University of Technology, Baghdad, Iraq
autor
  • Mechanical Engineering Department, University of Technology, Baghdad, Iraq
autor
  • Department of Mechanical Engineering, Faculty of Engineering, University of Kufa, Kufa, Iraq
Bibliografia
  • [1] E.K. Njim, M. Al-Waily, S.H. Bakhy, A Review of the Recent Research on the Experimental Tests of Functionally Graded Sandwich Panels, Journal of Mechanical Engineering Research and Developments 44/3 (2021) 420-441.
  • [2] A. Garg, M.O. Belarbi, H.D. Chalak, A. Chakrabarti, A review of the analysis of sandwich FGM structures, Composite Structures 258 (2021) 113427. DOI: https://doi.org/10.1016/j.compstruct.2020.113427
  • [3] E. K. Njim, S. H. Bakhy, M. Al-Waily, Analytical and Numerical Investigation of Buckling Behavior of Functionally Graded Sandwich Plate with Porous Core, Journal of Applied Science and Engineering 25/2 (2022) 339-347. DOI: https://doi.org/10.6180/jase.202204_25(2).0010
  • [4] E.K. Njim, S.H. Bakhy, M. Al-Waily, Analytical and numerical investigation of buckling load of functionally graded materials with porous metal of sandwich plate, Materials Today: Proceedings (2021) (in press). DOI: https://doi.org/10.1016/j.matpr.2021.03.557
  • [5] Z. Huang, Y. Zhou, G. Hu, W. Deng, H. Gao, L. Sui, Flexural resistance and deformation behavior of CFRP-ULCC-steel sandwich composite structures, Composite Structures 257 (2021) 113080. DOI: https://doi.org/10.1016/j.compstruct.2020.113080
  • [6] Y. Zhang, J. Wang, Fabrication of Functionally Graded Porous Polymer Structures Using Thermal Bonding Lamination Techniques, Procedia Manufacturing 10 (2017) 866-875. DOI: https://doi.org/10.1016/j.promfg.2017.07.073
  • [7] M. Kazemi, Experimental analysis of sandwich composite beams under three-point bending with an emphasis on the layering effects of foam core, Structures 29 (2021) 383-391. DOI: https://doi.org/10.1016/j.istruc.2020.11.048
  • [8] M. Arefi, F. Najafitabar, Buckling and free vibration analyses of a sandwich beam made of a soft core with FG-GNPs reinforced composite face-sheets using Ritz Method, Thin-Walled Structures 158 (2021) 107200. DOI: https://doi.org/10.1016/j.tws.2020.107200
  • [9] M. Di Sciuva, M. Sorrenti, Bending, free vibration, and buckling of functionally graded carbon nanotube-reinforced sandwich plates, using the extended Refined Zigzag Theory, Composite Structures 227 (2019) 111324. DOI: https://doi.org/10.1016/j.compstruct.2019.111324
  • [10] I.G. Shaaban, Y.B. Shaheen, E.L. Elsayed, O.A. Kamal, P.A. Adesina, Flexural characteristics of lightweight ferrocement beams with various types of core materials and mesh reinforcement, Construction and Building Materials 171 (2018) 802-816. DOI: https://doi.org/10.1016/j.conbuildmat.2018.03.167
  • [11] B. Srikarun, W. Songsuwan, N. Wattanasakulpong, Linear and nonlinear static bending of sandwich beams with functionally graded porous core under different distributed loads, Composite Structures 276 (2021) 114538. DOI: https://doi.org/10.1016/j.compstruct.2021.114538
  • [12] Y. Yu, W.B. Hou, P. Hu, H. Yang, X. Jia, Failure analysis and bending performance of carbon fiber composite sandwich structures with corrugated cores, Journal of Sandwich Structures and Materials 23/5 (2021) 1427-1452. DOI: https://doi.org/10.1177/1099636219891598
  • [13] A. Karakoti, S. Pandey, V.R. Kar, Bending analysis of sandwich shell panels with exponentially graded core, Materials Today: Proceedings 28/3 (2020) 1706-1708. DOI: https://doi.org/10.1016/j.matpr.2020.05.132
  • [14] M.A. Xavior, D. Nishanth, N.N. Kumar, P. Jeyapandiarajan, Synthesis and Testing of FGM made of ABS Plastic Material, Materials Today: Proceedings 22/4 (2020) 1838-1844. DOI: https://doi.org/10.1016/j.matpr.2020.03.018
  • [15] X.Y. Zhang, G. Fang, S. Leeflang, A.A. Zadpoor, J. Zhou, Topological design, permeability, and mechanical behavior of additively manufactured functionally graded porous metallic biomaterials, Acta Biomaterialia 84 (2018) 437-452. DOI: https://doi.org/10.1016/j.actbio.2018.12.013
  • [16] A.H. Mostefa, M. Slimane, Influence of porosity on the analysis of sandwich plates FGM using of high order shear deformation theory, Frattura ed Integrità Strutturale 14/51 (2020) 199-214. DOI: https://doi.org/10.3221/IGF-ESIS.51.16
  • [17] N. Hebbar, I. Hebbar, D. Ouinas, M. Bourada, Numerical modeling of bending, buckling, and vibration of functionally graded beams by using a higher-order shear deformation theory, Frattura ed Integrità Strutturale 14/52 (2020) 230-246. DOI: https://doi.org/10.3221/IGF-ESIS.52.18
  • [18] M. Atta, A. Abu-Sinna, S. Mousa, H.E.M. Sallam, A. A. Abd-Elhady, Flexural Behavior of Functionally Graded Polymeric Composite Beams, Journal of Industrial Textiles (2021) (published online first). DOI: https://doi.org/10.1177/15280837211000365
  • [19] J. Hohe, V. Hardenacke, V. Fascio, Y. Girard, J. Baumeister, K. Stöbener, J. Weise, D. Lehmhus, S. Pattofatto, H. Zeng, H. Zhao, V. Calbucci, F. Rustichelli, F. Fiori, Numerical and experimental design of graded cellular sandwich cores for multifunctional aerospace applications, Journal of Materials and Design 39 (2012) 20-32. DOI: https://doi.org/10.1016/j.matdes.2012.01.043
  • [20] K. Koutoati, F. Mohri, E. Daya, E. Carrera, A finite element approach for the static and vibration analyses of functionally graded material viscoelastic sandwich beams with nonlinear material behavior, Composite Structures 274 (2021) 114315. DOI: https://doi.org/10.1016/j.compstruct.2021.114315
  • [21] M. Kaddari, A. Kaci, A.A. Bousahla, A. Tounsi, F. Bourada, A. Tounsi, E.A. Bedia, M.A. Al-Osta, A study on the structural behavior of functionally graded porous plates on elastic foundation using a new quasi-3D model: bending and free vibration analysis, Computers and Concrete 25/1 (2020) 37-57. DOI: https://doi.org/10.12989/cac.2020.25.1.037
  • [22] A. Seyedkanani, H. Niknam, A.H. Akbarzadeh, Bending behavior of optimally graded 3D printed cellular beams, Additive Manufacturing 35 (2020) 101327. DOI: https://doi.org/10.1016/j.addma.2020.101327
  • [23] B.R.L. Yadhav, H.K. Govindaraju, M.D. Kiran, B. Suresha, Three-point bending and impact behavior of carbon/epoxy composites modified with titanium dioxide nanoparticles, Materials Today: Proceedings 43/2 (2021) 1755-1761. DOI: https://doi.org/10.1016/j.matpr.2020.10.442
  • [24] M.M. Hanon, R. Marczis, L. Zsidai, Influence of the 3D Printing Process Settings on Tensile Strength of PLA and HT-PLA, Periodica Polytechnica Mechanical Engineering 65/1 (2021) 38-46. DOI: https://doi.org/10.3311/PPme.13683
  • [25] L. Jing, X. Su, D. Chen, F. Yang, L. Zhao, Experimental and numerical study of sandwich beams with layered-gradient foam cores under low-velocity impact, Thin-Walled Structures 135 (2019) 227-244. DOI: https://doi.org/10.1016/j.tws.2018.11.011
  • [26] A. Alavi Nia, S. Mokari, M. Zakizadeh, M. Kazemi, Experimental and numerical investigations of the effect of cellular wired core on the ballistic resistance of sandwich structures, Aerospace Science and Technology 70 (2017) 445-452. DOI: https://doi.org/10.1016/j.ast.2017.08.015
  • [27] A.A. Nia, M. Kazemi, Experimental study of ballistic resistance of sandwich targets with aluminum face-sheet and graded foam core, Journal of Sandwich Structures and Materials 22/2 (2020) 461-479. DOI: https://doi.org/10.1177/1099636218757669
  • [28] M. Kazimi, Experimental investigation on the energy absorption characteristics of sandwich panels with layering of foam core under quasi-static punch loading, Mechanics of Advanced Materials and Structures (2021) (published online). DOI: https://doi.org/10.1080/15376494.2021.1885770
  • [29] E.K. Njim, S.H. Bakhy, M. Al-Waily, Analytical and Numerical Investigation of Free Vibration Behavior for Sandwich Plate with Functionally Graded Porous Metal Core, Pertanika Journal of Science and Technology 29/3 (2021) 1655-1682. DOI: https://doi.org/10.47836/pjst.29.3.39
  • [30] E.K. Njim, S.H. Bakhy, M. Al-Waily, Analytical and numerical free vibration analysis of porous functionally graded materials (FGPMs) sandwich plate using Rayleigh-Ritz method, Archives of Materials Science and Engineering 110/1 (2021) 27-41. DOI: https://doi.org/10.5604/01.3001.0015.3593
  • [31] A.F. Avila, Failure mode investigation of sandwich beams with functionally graded core, Composite Structures 81/3 (2007) 323-330. DOI: https://doi.org/10.1016/j.compstruct.2006.08.030
  • [32] D. Lukkassen, A. Meidell, Advanced materials and structures and their fabrication processes, Book manuscript, Narvik University College, HiN, 2007.
  • [33] S.E. Sadiq, M.J. Jweeg, S.H. Bakhy, Strength analysis of aircraft sandwich structure with a honeycomb core: Theoretical and Experimental Approaches, Engineering and Technology Journal 39/1A (2021) 153-166. DOI: http://dx.doi.org/10.30684/etj.v39i1A.1722
  • [34] E.K. Njim, S.H. Bakhy, M. Al-Waily, Optimization design of vibration characterizations for functionally graded porous metal sandwich plate structure, Materials Today: Proceedings (2021) (in press). DOI: https://doi.org/10.1016/j.matpr.2021.03.235
  • [35] S.G. Hussein, M.A. Al-Shammari, A.M. Takhakh, M. Al-Waily, Effect of Heat Treatment on Mechanical and Vibration Properties for 6061 and 2024 Aluminum Alloys, Journal of Mechanical Engineering Research and Developments 43/1 (2020) 48-66.
  • [36] A.A. Kadhim, E.A. Abbod, A.K. Muhammad, K.K. Resan, M. Al-Waily, Manufacturing and Analyzing of a New Prosthetic Shank with Adapters by 3D Printer, Journal of Mechanical Engineering Research and Developments 44/3 (2021) 383-391.
  • [37] Q.H. Jebur, M.J. Jweeg, M. Al-Waily, H.Y. Ahmad, K.K. Resan, Hyperelastic models for the description and simulation of rubber subjected to large tensile loading, Archives of Materials Science and Engineering 108/2 (2021) 75-85. DOI: https://doi.org/10.5604/01.3001.0015.0256
  • [38] F.M. Kadhim, A.M. Takhakh, J.S. Chiad, Modeling and Evaluation of Smart Economic Transfemral Prosthetic, Defect and Diffusion Forum 398 (2020) 48-53. DOI: https://doi.org/10.4028/www.scientific.net/DDF.398.48
  • [39] J.S. Chiad, M. Al-Waily, M.A. Al-Shammari, Buckling Investigation of Isotropic Composite Plate Reinforced by Different Types of Powders, International Journal of Mechanical Engineering and Technology 9/9 (2018) 305-317.
  • [40] Y.A. Shafeeq, J.S. Chiad, Y.Y. Kahtan, Study, analysis, the vibration and stability for the artificial hand during its daily working, International Journal of Mechanical Engineering and Technology 9/13 (2018) 1706-1716.
  • [41] S. Farah, D.G. Anderson, R. Langer, Physical and Mechanical Properties of PLA, and Their Functions in Widespread Applications - A Comprehensive Review. Advanced Drug Delivery Reviews 107 (2016) 367-392. DOI: https://doi.org/10.1016/j.addr.2016.06.012
  • [42] ASTM C 393 - 00. Standard test method for flexural properties of sandwich composites, ASTM International, West Conshohocken, PA, United States, 2000.
  • [43] M.D. Do, M.T. Tran, H. C. Truong, Bending analysis of sandwich beam with functionally graded face sheets using various beam theories by meshfree method, Kalpa Publications in Engineering 3 (2020) 139-149. DOI: https://doi.org/10.29007/9nvf
  • [44] K.F. Arndt, M.D. Lechner (eds.), Polymer Solids and Polymer Melts–Mechanical and Thermomechanical Properties of Polymers, First Edition, Vol. 6A3, Springer-Verlag, Berlin, Heidelberg, 2014. DOI: https://doi.org/10.1007/978-3-642-55166-6
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-450d3024-3de3-4713-a6e6-ce5a01e141a9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.