PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the Exact Dimension of Mandelbrot Measure

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We develop, in the context of the boundary of a supercritical Galton-Watson tree, a uniform version of the argument used by Kahane (1987) on homogeneous trees to estimate almost surely and simultaneously the Hausdorff and packing dimensions of the Mandelbrot measure over a suitable set J. As an application, we compute, almost surely and simultaneously, the Hausdorff and packing dimensions of the level sets E(α) of infinite branches of the boundary of the tree along which the averages of the branching random walk have a given limit point.
Słowa kluczowe
Rocznik
Strony
299--314
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
  • Faculté des Sciences de Monastir, Avenue de l’environnement 5000 Monastir, Tunisia
Bibliografia
  • [1] N. Attia, On the multifractal analysis of the branching random walk in Rd, J. Theoret. Probab. 27 (4) (2014), pp. 1329-1349.
  • [2] N. Attia and J. Barral, Hausdorff and packing spectra, large deviations, and free energy for branching random walks in Rd, Comm. Math. Phys. 331 (1) (2014), pp. 139-187.
  • [3] J. Barral, Continuity of the multifractal spectrum of a random statistically self-similar measure, J. Theoret. Probab. 13 (4) (2000), pp. 1027-1060.
  • [4] J. Barral, Generalized vector multiplicative cascades, Adv. in Appl. Probab. 33 (4) (2001), pp. 874-895.
  • [5] J. D. Biggins, Martingale convergence in the branching random walk, J. Appl. Probab. 14 (1) (1977), pp. 25-37.
  • [6] J. D. Biggins, Uniform convergence of martingales in the branching random walk, Ann. Probab. 20 (1) (1992), pp. 137-151.
  • [7] J. D. Biggins, B. M. Hambly, and O. D. Jones, Multifractal spectra for random self-similar measures via branching processes, Adv. in Appl. Probab. 43 (1) (2011), pp. 1-39.
  • [8] C. D. Cutler, Connecting ergodicity and dimension in dynamical systems, Ergodic Theory Dynam. Systems 10 (3) (1990), pp. 451-462.
  • [9] K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, second edition, Wiley, Hoboken, NJ, 2003.
  • [10] K. J. Falconer, The multifractal spectrum of statistically self-similar measures, J. Theoret. Probab. 7 (3) (1994), pp. 681-702.
  • [11] A. H. Fan, Sur les dimensions de mesures, Studia Math. 111 (1) (1994), pp. 1-17.
  • [12] J.-P. Kahane, Sur le chaos multiplicatif, Ann. Sci. Math. Québec 9 (2) (1985), pp. 105-150.
  • [13] J.-P. Kahane, Positive martingales and random measures, Chin. Ann. Math. Ser. B 8 (1) (1987), pp. 1-12.
  • [14] J.-P. Kahane and J. Peyrière, Sur certaines martingales de Benoit Mandelbrot, Adv. Math. 22 (2) (1976), pp. 131-145.
  • [15] Q. Liu, Sur une équation fonctionnelle et ses applications: Une extension du théorème de Kesten-Stigum concernant des processus de branchement, Adv. in Appl. Probab. 29 (2) (1997), pp. 353-373.
  • [16] Q. Liu and A. Rouault, On two measures defined on the boundary of a branching tree, in: Classical and Modern Branching Processes (Minneapolis, MN, 1994), K. B. Athreya and P. Jagers (Eds.), Springer, New York 1997, pp. 187-201.
  • [17] R. Lyons, Random walks and percolation on trees, Ann. Probab. 18 (3) (1990), pp. 931-958.
  • [18] R. Lyons, A simple path to Biggins’ martingale convergence for branching random walk, in: Classical and Modern Branching Processes (Minneapolis, MN, 1994), K. B. Athreya and P. Jagers (Eds.), Springer, New York 1997, pp. 217-221.
  • [19] G. M. Molchan, Scaling exponents and multifractal dimensions for independent random cascades, Comm. Math. Phys. 179 (3) (1996), pp. 681-702.
  • [20] J. Neveu, Martingales à temps discret, Masson et Cie, éditeurs, Paris 1972.
  • [21] J. Peyrière, Calculs de dimensions de Hausdorff, Duke Math. J. 44 (3) (1977), pp. 591-601.
  • [22] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
  • [23] B. von Bahr and C.-G. Esseen, Inequalities for the rth absolute moment of a sum of random variables, 1 ≤ r ≤ 2, Ann. Math. Statist. 36 (1965), pp. 299-303.
  • [24] E. C. Waymire and S. C. Williams, Multiplicative cascades: Dimension spectra and dependence, in: Proceedings of the Conference in Honor of Jean-Pierre Kahane (Orsay, 1993), J. Fourier Anal. Appl. (1995), Special Issue, pp. 589-609.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4504a0d5-6dd7-40f3-b4a3-e19b920c053d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.