PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of LDG scheme to solve semi-differential equations

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the current work, we investigate a technique based on discontinuous Galerkin method for the numerical approximation of semi-differential equations with Caputo’s fractional derivative. In this approach, using the natural upwind fluxes enables us to solve the model problem element by element locally in each subintervals and there is no need to solve a full global matrix. Numerical experiments are given to verify the efficiency and accuracy of the proposed method. Numerical solutions are compared with the exact solutions as well as the numerical solutions obtained by other available well-established computational procedures. The results show that the LDG method is more accurate for solving this class of differential equation with relatively low degrees of polynomials and number of elements.
Rocznik
Strony
27--39
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
  • Department of Applied Mathematics, Faculty of Mathematics and Computer Shahid Bahonar University of Kerman, Kerman, Iran
Bibliografia
  • [1] Kilbas, A., Srivastava, H., & Trujillo, J. (2006). Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier.
  • [2] Podlubny, I. (1999). Fractional Differential Equations. New York: Academic Press.
  • [3] Fadravi, H.H., Saberi Nik, H., & Buzhabadi, R. (2011). Homotopy analysis method based on optimal value of the convergence control parameter for solving semi-differential equations. Journal of Mathematical Extension, 5, 105-112.
  • [4] Ghorbani, A., & Alavi, A. (2008). Application of He’s variational iteration method to solve semidifferential equations of nth order. Mathematical Problems in Engineering, Vol. 2008, Article ID 627983, 9 pages, DOI:10.1155/2008/627983.
  • [5] Hamarsheh, M.H., & Rawashdeh, E.A. (2010). A numerical method for solution of semidifferential equations. Matematiki Vesnik, 62(2), 117-126.
  • [6] Rawashdeh, E.A. (2006). Numerical solution of semi-differential equations by collocation method. Applied Mathematics and Computation, 174(2), 869-876.
  • [7] Diethelm, K., & Ford, N.J. (2002). Analysis of fractional differential equation. Journal of Mathematical Analysis and Applications, 265, 229-248.
  • [8] Yuan, L., & Agrawal, O.P. (2002). A numerical scheme for dynamic systems containing fractional derivatives. Journal of Vibration and Acoustics, 124, 321-324.
  • [9] Bagley, R.L., & Torvik, P.J. (1984). On the appearance of the fractional derivative in the behavior of real materials. Journal of Applied Mechanics, 51(2), 294-298.
  • [10] Bagley, R.L., & Torvik, P.J. (1983). Fractional calculus-a different approach to the analysis of viscoe1astically damped structures. The American Institute of Aeronautics and Astronautics, 21(5), 741-748.
  • [11] Saha Ray, S., & Bera, R.K. (2005). Analytical solution of the Bagley Torvik equation by Adomian decomposition method. Applied Mathematics and Computation, 168, 398-410.
  • [12] Azizi, M-R., & Khani, A. (2017). Sinc operational matrix method for solving the Bagley-Torvik equation. Computational Methods for Differential Equations, 5(1), 56-66.
  • [13] Arqub, O.A., & Maayah, B. (2018). Solutions of Bagley-Torvik and Painlev´e equations of fractional order using iterative reproducing kernel algorithm with error estimates. Neural Computing & Applications, 29(5), 1465-1479.
  • [14] Cenesiz, Y., Keskin, Y., & Kurnaz, A. (2010). The solution of the Bagley-Torvik equation with the generalized Taylor collocation method. Journal of Franklin Institute, 347(2), 452-466.
  • [15] Diethelm, K., & Ford, N.J. (2002). Numerical solution of the Bagley-Torvik equation. BIT Numerical Mathematics, 42, 490-507.
  • [16] Rahimkhani, P., & Ordokhani, Y. (2018), Application of M¨untz-Legendre polynomials for solving the Bagley-Torvik equation in a large interval. SeMA Journal, 75(3), 517-533.
  • [17] Srivastava, H.M., Shah, F.A., & Abass, R. (2019). An application of the Gegenbauer wavelet method for the numerical solution of the fractional Bagley-Torvik equation. Russian Journal of Mathematical Physics, 26(1), 77-93.
  • [18] Deng, W., & Hesthaven, S. (2015). Local discontinuous Galerkin method for fractional ordinary differential equations. BIT Numerical Mathematics, 55, 967-985.
  • [19] Negar, M.R., Izadi, M., & Saeedi, H. (2019). Numerical solution of fractional ordinary differential equations by local discontinuous Galerkin method. Wavelet and Linear Algebra, 5(3 (Special issue)), 1-25, DOI:10.22072/wala.2018.82269.1161.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4500c31f-158f-4b83-96bc-043ea0885240
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.