PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Analysis of model-scale open-water test uncertainty

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Within the frame of CTO’s standard procedure, a propeller open-water test is preceded by a reference measurement, which is taken for a reference propeller model (P356). The results of these measurements are assembled to conduct an open-water test uncertainty analysis. Additional material was gathered from open-water tests that were conducted throughout several research projects on the CP469 model, which is a model of the Nawigator XXI propeller. The latter is a controllable pitch propeller; its pitch was reset before each test repetition. Known procedures for the determination of the open-water test uncertainty do not allow one to extract the manufacture impact directly, without building many models. This factor was addressed with the use of lifting surface calculations. Under certain additional assumptions, these calculations were performed for 100 generic versions of each propeller’s geometry, which were generated by random deviations from the theoretical data within the limits of allowed tolerances. The results of the conducted analyses made it possible to extract separate factors, which were connected to the test’s repeatability, measurement bias and geometry tolerance.
Rocznik
Tom
Strony
4--11
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
Bibliografia
  • 1. B. Volker, Prac[tical ship hydrodynamics, Butterworth Heinemann, 2000, doi: 10.1016/B978-0-08-097150-6.10007-7.
  • 2. M. Schmiechen, ‘50 years rational theory of propulsion’, First International Symposium on Marine Propulsors, Trondheim, 2009.
  • 3. C. Dymarski, ‘A concept design of diesel-hydraulic propulsion system for passenger ship intended for inland shallow water navigation’, Polish Maritime Research, vol. 26, no. 3, pp. 30-38, 2019, doi: 10.2478/pomr-2019-0043.
  • 4. L. Greitsch, M. Druckenbrod, S. Bednarek and H.-J. Heinka, ‘A holistic design approach for propulsion packages’, Third International Symposium on Marine Propulsors, Launceston, 2013.
  • 5. I. Kamal, J. Binns, N. Bose and G. Thomas, ‘Reliability assessment of ship powering performance extrapolations using Monte Carlo methods’, Third International Symposium on Marine Propulsors, Launceston, 2013.
  • 6. N. Bose and M. Susan, ‘Reliability and accuracy of ship powering performance extrapolation’, First International Symposium on Marine Propulsors, Trondheim, 2009.
  • 7. N. Hasuike, M. Okazaki, A. Okazaki and K. Fujiyama, ‘Scale effects of marine propellers in POT and self propulsion test conditions’, in Fifth International Symposium on Marine Propulsors, Espoo, 2017.
  • 8. S.B. Muller, M. Abdel-Maksound and G. Hilbert, ‘Scale effects on propellers for large container vessels’, First International Symposium on Marine Propulsors, Trondheim, 2009.
  • 9. Bugalski T., Streckwall H. and J. Szantyr, ‘Critical review of propeller performance scaling methods, based on model experiments and numerical calculations’, Polish Maritime Research, vol. 20, no. 4, 2013, doi: 10.2478/pomr-2013-0043.
  • 10. S. Helma, S. Heinrich and J. Richter, ‘The effect of propeller scaling methodology on the performance prediction’, Fifth International Symposium on Marine Propulsors, Espoo, 2017.
  • 11. V. Krasilnikov, S. Lucia and S. Kristina, ‘Numerical investigation into scale effect on the performance characteristics of twin-screw offshore vessels’, Fifth International Symposium on Marine Propulsors, Espoo, 2017.
  • 12. N. Bulten and P. Stoltenkamp, ‘Full scale CFD; the end of the Froude-Reynolds battle’, Fifth International Symposium on Marine Propulsors, Espoo, 2017.
  • 13. V. Krasilnikov, ‘Self-propulsion RANS computations with a single-screw container ship’, Third International Symposium on Marine Propulsors, Launceston, 2013.
  • 14. Y. Zhang, X. P. Wu, M. Y. Lai, G. P. Zhou and J. Zhang, ‘Feasibility study of RANS in predicting propeller cavitation in behind-hull conditions’, Polish Maritime Research, vol. 27, no. 4, 2020, doi: 10.2478/pomr-2020-0063.
  • 15. T. Cepowski, ‘Regression formulas for the estimation of engine total power for tankers, container ships and bulk carriers on the basis of cargo capacity and design speed’, Polish Maritime Research, vol. 26, no. 1, 2019, doi: 10.2478/ pomr-2019-0010.
  • 16. A. Vrijdag, J. de Jong and H. van Nuland, ‘Uncertainty in Bollard pull predictions’, Third International Symposium on Marine Propulsors, Launceston, 2013.
  • 17. L. Rowiński and M. Kaczmarczyk, ‘Evaluation of effectiveness of waterjet propulsor for a small underwater vehicle’, Polish Maritime Research, vol. 28, no. 4, 2022, doi: 10.2478/pomr-2021-0047.
  • 18. A. Nadery and H. Ghassemi, ‘Numerical investigation of the hydrodynamic performance of the propeller behind the ship with and without WED’, Polish Maritime Research, vol. 27, no. 4, 2020, doi: 10.2478/pomr-2020-0065.
  • 19. M. Burak Samsul, ‘Blade cup method for cavitation reduction in marine propellers’, Polish Maritime Research, vol. 28, no. 2, 2021, doi: 10.2478/pomr-2021-0021.
  • 20. P. Król, ‘Blade section profile array lifting surface design method for marine screw propeller blade’, Polish Maritime Research, vol. 26, no. 4, 2019, doi: 10.2478/pomr-2019-0075.
  • 21. L. Guangnian, Q. Chen and Y. Liu, ‘Experimental study on dynamic structure of propeller tip vortex’, Polish Maritime Research, vol. 27, no. 2, 2020, doi: 10.2478/pom4-2020-022.
  • 22. Propulsion Committee of the 28th ITTC, ‘ITTC - Recommended Procedures and Guidelines’, ITTC, 2022. [Online]. Available: https://www.ittc.info/media/7977/75- 01-02-02.pdf. [Accessed 8 August 2022].
  • 23. Quality Systems Group of the 28th ITTC, ‘ITTC - Recommended Procedures and Guidelines’, ITTC, 2022. [Online]. Available: https://www.ittc.info/media/8027/75- 02-03-022.pdf. [Accessed 8 August 2022].
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-44fcfaeb-9ebe-40e7-9c48-94fb7f124d06
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.