PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of Environmental Impacts of Cosmetic Packaging Using Life Cycle Assessment (LCA)

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza wpływu opakowań kosmetycznych na środowisko z wykorzystaniem metody oceny cyklu życia (LCA)
Języki publikacji
EN
Abstrakty
EN
This article examines the environmental aspects of cosmetic packaging, with a focus on the application of Life Cycle Assessment (LCA) as a tool for understanding its impacts on the environment and guiding eco-design strategies. LCA methodologies provide a comprehensive framework to evaluate packaging materials, from production to disposal, enabling the comparison of traditional and innovative solutions, such as the implementation of (bio)degradable polymers and/or recycled materials in cosmetic industry packaging. Recent advancements in packaging design and recycling technologies have contributed to improvements in resource efficiency and waste reduction. However, there are still challenges in applying LCA methods consistently, particularly when assessing bio-based materials. By incorporating eco-design principles, promoting recycling, and utilizing LCA insights, the cosmetics industry can work towards reducing its environmental impact and promoting more sustainable practices. This paper emphasizes the necessity for ongoing innovation and interdisciplinary collaboration in the development of sustainable packaging solutions that optimize the functional properties of materials while aligning with consumer demands and minimizing negative environmental impact.
PL
W niniejszym artykule przedstawiono zagadnienia związane z oceną cyklu życia (z ang. Life Cycle Assessment - LCA) w zakresie opakowań kosmetycznych oraz ich wpływu na środowisko, jak również wspierania strategii eko-projektowania. Metodologia LCA stanowi kompleksowe narzędzie oceny materiałów opakowaniowych na każdym etapie ich cyklu życia - od produkcji po utylizację, co umożliwia porównanie tradycyjnych i innowacyjnych rozwiązań, takich jak zastosowanie polimerów (bio)degradowalnych oraz materiałów pochodzących z recyklingu w opakowaniach kosmetycznych. Ostatnie postępy w projektowaniu opakowań oraz rozwój technologii recyklingu przyczyniły się do poprawy efektywności wykorzystania zasobów i redukcji ilości odpadów, zgodnie z zasadami gospodarki o obiegu zamkniętym. Niemniej jednak nadal występują trudności w stosowaniu metod LCA w sposób spójny, szczególnie przy ocenie materiałów pochodzenia biologicznego. Poprzez wdrażanie zasad eko-projektowania, promowanie recyklingu i wykorzystywanie wyników analizy LCA, przemysł kosmetyczny może dążyć do zmniejszenia swojego wpływu na środowisko oraz wspierać bardziej zrównoważone praktyki w produkcji i wykorzystaniu opakowań. Niniejsza praca wskazuje na konieczność wprowadzania innowacji oraz współpracy interdyscyplinarnej w celu opracowania zrównoważonych rozwiązań opakowaniowych, które łączą funkcjonalność, oczekiwania konsumentów oraz cele środowiskowe.
Czasopismo
Rocznik
Tom
Strony
6--12
Opis fizyczny
Bibliogr. 39 poz., rys.
Twórcy
  • Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
  • Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
  • Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
  • Ecoinnovazione Srl, Bologna, Italy
  • Ecoinnovazione Srl, Bologna, Italy
Bibliografia
  • 1. Baki, G. Introduction to Cosmetic Formulation and Technology; Wiley: Hoboken, NJ, USA, 2023.
  • 2. Vassallo, N.; Refalo, P. Reducing the Environmental Impacts of Plastic Cosmetic Packaging: A Multi-Attribute Life Cycle Assessment. Cosmetics 2024, 11, 34. https://doi.org/10.3390/cosmetics11010034.
  • 3. Ren, Z.; Zhang, D.; Gao, Z. Sustainable Design Strategy of Cosmetic Packaging in China Based on Life Cycle Assessment. Sustainability 2022, 14, 8155. https://doi.org/10.3390/su14138155.
  • 4. de Lange, D.E.; Busch, T.; Delgado-Ceballos, J. Sustaining Sustainability in Organizations. J. Bus. Ethics 2012, 110, 151-156. https://doi.org/10.1007/s10551-012-1425-1.
  • 5. L’Haridon, J.; Patouillard, L.; Pedneault, J.; Boulay, A.-M.; Witte, F.; Vargas-Gonzalez, M.; Bonningue, P.; Rollat, I.; Blanchard, T.; Goncalves, G.; et al. SPOT: A Strategic Life-Cycle-Assessment-Based Methodology and Tool for Cosmetic Product Eco-Design. Sustainability 2023, 15, 14321. https://doi.org/10.3390/su151914321.
  • 6. Vezzoli, C.; Manzini, E. Design for Environmental Sustainability; Springer: London, UK, 2008; pp. 1-303. https://doi.org/10.1007/978-1-84800-163-3.
  • 7. Epperson, L. Green Beauty: Exploring Sustainable Practices in the Cosmetic Industry. Sustainability 2023, 15, 4398. https://doi.org/10.3390/su15074398.
  • 8. Rocca, R.; Acerbi, F.; Fumagalli, L.; Taisch, M. Sustainability Paradigm in the Cosmetics Industry: State of the Art. Cleaner Waste Syst. 2022, 3, 100019. https://doi.org/10.1016/j.clwas.2022.100019.
  • 9. Geyer, R.; Jambeck, J.R.; Law, K.L. Production, Use, and Fate of All Plastics Ever Made. Sci. Adv. 2017, 3, e1700782. https://doi.org/10.1126/sciadv.1700782.
  • 10. Rudnik, E. Compostable Polymer Materials; Elsevier: Hungary, 2013.
  • 11. Sikorska, W.; Rydz, J.; Wolna-Stypka, K.; Musioł, M.; Adamus, G.; Kwiecień, I.; Janeczek, H.; Duale, K.; Kowalczuk, M. Forensic Engineering of Advanced Polymeric Materials-Part V: Prediction Studies of Aliphatic-Aromatic Copolyester and Polylactide Commercial Blends in View of Potential Applications as Compostable Cosmetic Packages. Polymers 2017, 9, 257. https://doi.org/10.3390/polym9070257.
  • 12. U.S. Environmental Protection Agency. What Makes a Product "Greener"? EPA. Available online: https://www.epa.gov/greenerproducts/what-makes-product-greener (accessed on 10 January 2025).
  • 13. Muralikrishna, I.V.; Manickam, V. Chapter Five-Life Cycle Assessment. In Environmental Management; Butterworth-Heinemann: Oxford, UK, 2017; pp. 57-75. https://doi.org/10.1016/B978-0-12-811989-1.00005-6.
  • 14. Life Cycle Assessment: Best Practices of International Organization for Standardization (ISO) 14040-14044 Series. APEC: Singapore, 2004. European Commission. Life Cycle Assessment (LCA). European Platform on Life Cycle Assessment. Available online: https://eplca.jrc.ec.europa.eu/lifecycle-assessment.html (accessed on 10 January 2025).
  • 15. Kotler, P.; Kartajaya, H.; Setiawan, I. Marketing 5.0: Technology for Humanity; Wiley: Hoboken, NJ, USA, 2021. https://doi.org/10.1002/9781119663763.
  • 16. Civancik-Uslu, D.; Puig, R.; Ferrer, L.; Fullana-i-Palmer, P. Influence of End-of-Life Allocation, Credits, and Other Methodological Issues in LCA of Compounds: An In-Company Circular Economy Case Study on Packaging. J. Clean. Prod. 2019, 212, 925-940. https://doi.org/10.1016/j.jclepro.2018.12.071.
  • 17. Abrha, H.; Cabrera, J.; Dai, Y.; Irfan, M.; Toma, A.; Jiao, S.; Liu, X. Bio-Based Plastics Production, Impact and End of Life: A Literature Review and Content Analysis. Sustainability 2022, 14, 4855. https://doi.org/10.3390/su14084855.
  • 18. Bishop, G.; Styles, D.; Lens, P.N.L. Environmental Performance Comparison of Bioplastics and Petrochemical Plastics: A Review of Life Cycle Assessment (LCA) Methodological Decisions. Resour. Conserv. Recycl. 2021, 168, 105451. https://doi.org/10.1016/j.resconrec.2021.105451.
  • 19. Spierling, S.; Knüpffer, E.; Behnsen, H.; Mudersbach, M.; Krieg, H.; Springer, S.; Endres, H.J. Bio-Based Plastics-A Review of Environmental, Social, and Economic Impact Assessments. J. Clean. Prod. 2018, 185, 476-491. https://doi.org/10.1016/j.jclepro.2018.03.174.
  • 20. Hermansson, F.; Janssen, M.; Svanström, M. Prospective Study of Lignin-Based and Recycled Carbon Fibers in Composites through Meta-Analysis of Life Cycle Assessments. J. Clean. Prod. 2019, 233, 476-491. https://doi.org/10.1016/j.jclepro.2019.03.022.
  • 21. Vink, E.T.H.; Rabago, K.R.; Glassner, D.A.; Gruber, P.R. Applications of Life Cycle Assessment to NatureWorks™ Polylactide (PLA) Production. Polym. Degrad. Stab. 2003, 80, 403-419. https://doi.org/10.1016/S0141-3910(02)00372-5.
  • 22. Kim, S.; Dale, B.E. Environmental Life-Cycle Assessment of Biopolymers. Int. J. LCA 2005, 10, 200–206. https://doi.org/10.1065/lca2004.09.181.
  • 23. Gerngross, T.U.; Slater, S.C. The Potential of Biotechnology in the Production of Renewable Chemicals. Sci. Am. 2000, 283, 36-41. https://doi.org/10.1038/scientificamerican1200-36.
  • 24. Akiyama, M.; Tsuge, T.; Doi, Y. Polymeric Materials Derived from Renewable Resources. Polym. Degrad. Stab. 2003, 80, 183-194. https://doi.org/10.1016/S0141-3910(02)00367-1.
  • 25. Spierling, N.; Bringezu, S.; Finkbeiner, M.; Lehmann, A.; et al. Bio-Based Plastics-A Review of Environmental, Social, and Economic Impact Assessments. J. Clean. Prod. 2018, 185, 476-491. https://doi.org/10.1016/j.jclepro.2018.03.174.
  • 26. Zheng, J.; Suh, S. Strategies to Reduce the Global Carbon Footprint of Plastics. Nat. Clim. Chang. 2019, 9, 374-378. https://doi.org/10.1038/s41558-019-0459-z.
  • 27. Gerngross, T.U. New Opportunities in Bio-Based Plastics Production. Nat. Biotechnol. 1999, 17, 541-544. https://doi.org/10.1038/9873.
  • 28. Akiyama, M.; Tsuge, T.; Doi, Y. Biodegradable Plastics: Perspectives and Future Prospects. Polym. Degrad. Stab. 2003, 80, 183-194. https://doi.org/10.1016/S0141-3910(02)00367-1.
  • 29. Pietrini, M.; Roes, L.; Patel, M.K.; Chiellini, E. Environmental Performance of Bio-Based Polymers and Natural-Fiber Composites Assessed by Life Cycle Assessment. Biomacromolecules 2007, 8, 2210-2218. https://doi.org/10.1021/bm0700181.
  • 30. Vink, E.T.H.; Rabago, K.R.; Glassner, D.A.; Gruber, P.R. Applications of Life Cycle Assessment to NatureWorks™ Polylactide (PLA) Production. Polym. Degrad. Stab. 2003, 80, 403-419. https://doi.org/10.1016/S0141-3910.(02)00372-5.
  • 31. Coelho, P.M.; Corona, B.; Klooster, R.T.; Worrell, E. Sustainability of Reusable Packaging-Current Situation and Trends. Resour. Conserv. Recycl. X 2020, 6, 100037. https://doi.org/10.1016/j.rcrx.2020.100037.
  • 32. Babbitt, C.W.; Gaustad, G.; Fisher, A.; Chen, W.; Liu, G. Closing the Loop on Circular Economy Research: From Theory to Practice and Back Again. Resour. Conserv. Recycl. 2018, 135, 1-2. https://doi.org/10.1016/j.resconrec.2018.03.022.
  • 33. Vassallo, N.; Refalo, P. Reducing the Environmental Impacts of Plastic Cosmetic Packaging: A Multi-Attribute Life Cycle Assessment. Cosmetics 2024, 11, 34. https://doi.org/10.3390/cosmetics11010034.
  • 34. Zhang, Y.; Wang, X.; Liu, M. Environmental Impact Assessment of Cosmetic Packaging Materials: A Comparative Life Cycle Assessment. J. Clean. Prod. 2020, 248, 119275. https://doi.org/10.1016/j.jclepro.2019.119275.
  • 35. Zhang, Y.; Wang, X.; Liu, M. Comparative Analysis of Life Cycle Environmental Impacts of Packaging Materials for Cosmetics. Resour. Conserv. Recycl. 2021, 163, 105079. https://doi.org/10.1016/j.resconrec.2020.105079.
  • 36. Dube, M.; Dube, S. Towards Sustainable Color Cosmetics Packaging. Cosmetics 2023, 10, 139. https://doi.org/10.3390/cosmetics10030139.
  • 37. Secchi, M.; Castellani, V.; Collina, E.; Mirabella, N.; Sala, S. Assessing Eco-Innovations in Green Chemistry: Life Cycle Assessment (LCA) of a Cosmetic Product with a Bio-Based Ingredient. J. Clean. Prod. 2016, 129, 269-281. https://doi.org/10.1016/j.jclepro.2016.04.084.
  • 38. Glew, D.; Lovett, P.N. Life Cycle Analysis of Shea Butter Use in Cosmetics: From Parklands to Product, Low Carbon Opportunities. J. Clean. Prod. 2014, 68, 73-80. https://doi.org/10.1016/j.jclepro.2013.11.020.
  • 39. Boesen, S.; Bey, N.; Niero, M. Environmental Sustainability of Liquid Food Packaging: Is There a Gap Between Danish Consumers’ Perception and Learnings from Life Cycle Assessment? J. Clean. Prod. 2019, 210, 1193-1206. https://doi.org/10.1016/j.jclepro.2018.11.055.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-44f65f50-8800-4c7b-847b-6fc02d9fedd3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.