Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Sand molding casting has been widely used for a long time. But, one of its main drawbacks is that surface quality of the castings is not good enough for some applications. The purposes of this research were to investigate the effect of addition of sawdust ash of rubber wood (SARW) on molding sand properties and the surface quality of iron castings and to find an appropriate level of SARW with the appropriate properties of the iron castings. The molding sand compositions for making a sand mold consisted of the recycled molding sand, bentonite, water and SARW. The percentage levels of SARW were 0%, 0.1%, 0.2%, 0.3% and 0.4%. The different proportions of molding sand samples were investigated for the molding sand properties including permeability, compression strength and hardness. The results showed that addition of SARW had an effect on the molding sand properties. The appropriate percentage proportion of molding sand was obtained at 95.8% recycled molding sand, 0.8% bentonite, 3% water and 0.4% SARW. There were statistically significant differences of mean surface roughness and hardness values of the iron castings made from molding sand samples without SARW addition and the appropriate percentage proportion of molding sand. In addition, the average surface roughness value of the iron castings made from the sand mold with the appropriate percentage proportion of molding sand was ~40% lower than those of the iron castings made from molding sand samples without SARW addition.
Czasopismo
Rocznik
Tom
Strony
53--64
Opis fizyczny
Bibliogr. 24 poz.,
Twórcy
autor
- Khon Kaen University, Department of Industrial Engineering, Khon Kaen, Thailand
autor
- Khon Kaen University, Department of Industrial Engineering, Khon Kaen, Thailand
autor
- Khon Kaen University, Department of Industrial Engineering, Khon Kaen, Thailand
autor
- Khon Kaen University, Department of Industrial Engineering, Khon Kaen, Thailand
Bibliografia
- [1] Puspitasari, P. & Dika, J.W. (2019). Casting quality enhancement using new binders on sand casting and high pressure rheo-die casting. Uspekhi Fiziki Metallov-Progress in Physics of Metals. 20(3), 396-425. DOI: 10.15407/ufm.20.03.396.
- [2] Pulivarti, S. R. & Birru, A.K. (2018). Optimization of green sand mould system using Taguchi based grey relational analysis. China Foundry. 15(2), 152-159. DOI: 10.1007/s41230-018-7188-1.
- [3] Palaniappan, J. (2017). Study on type C coal fly ash as an additive to molding sand for steel casting. Journal of the Institute of Engineers (India): Series D. 98(1), 139-145, DOI: 10.1007/s40033-016-0115-y.
- [4] Karunakaran, P., Jegadheesan, C., Dhanapal, P. & Sengottuvel, P. (2014). Sugar industry fly ash: an additive for molding sand to make aluminium castings. Russian Journal of Non-Ferrous Metals. 55(3), 247-253. DOI: 10.3103/S1067821214030079.
- [5] Kumar, P., Gaindhar, J. L. & Holi, S. (1998). Effect of fly ash addition on the quality of Al-11%9 Si alloy castings produced by v-process. Journal of Manufacturing Science and Engineering, Transactions of the ASME. 120(4), 722-727. DOI: 10.1115/1.2830212.
- [6] Magibalan, S., Senthilkumar, P., Senthilkumar, C. & Prabu, M. (2020). Multi-response optimization of AA 8011 and 12 wt.-% fly ash composites. Materials Testing. 62(5), 525-533. DOI: 10.1515/mt-2020-620513.
- [7] Arunachalam, S. & Chelladurai, S.J.S. (2020). Optimization of dry sliding wear parameters of AA336 aluminum alloy boron carbide and fly ash reinforced hybrid composites by stir casting process. Materialwissenschaft und werkstofftechnik. 51(2), 189-198. DOI: 10.1002/mawe.201900069.
- [8] Magibalan, S., Senthilkumar, P., Senthilkumar, C., Palanivelu, R. & Prabu, M. (2018). Microstructure and mechanical properties of fly ash particulate reinforced AA8011 aluminum alloy composites. Materials Testing. 60(7-8), 765-771. DOI: 10.3139/120.111211.
- [9] Szostak, B.G. & Golewski, G.L. (2020). Improvement of strength parameters of cement matrix with the addition of siliceous fly ash by using nanometric C-S-H seeds. Energies. 13(24), 6734, 1-15. DOI: 10.3390/en13246734.
- [10] Szcześniak, A., Zychowicz, J. & Stolarski, A. (2020). Influence of fly ash additive on the properties concrete with slag cement. Materials. 13(15), 3265, 1-16. DOI: 10.3390/ma13153265.
- [11] Opiso, E.M., Supremo, R.P. & Perodes, J.R. (2019). Effects of coal fly ash and fine sawdust on the performance of pervious concrete. Heliyon. 5(11), e02783, 1-7. DOI: 10.1016/j.heliyon.2019.e02783.
- [12] Saikaew, C. & Poolpraserd, C. (2015). Effect of rice husk on the molding sand properties and the quality of cast iron. Annals of DAAAM and Proceedings of the International DAAAM Symposium. 1038-1044, DOI: 10.2507/26th.daaam.proceedings.146.
- [13] Charitha, V., Athira, V.S., Jittin, V. & Bahurudeen, A. (2021). Use of different agro-waste ashes in concrete for effective upcycling of locally available resources. Construction and Building Materials. 285, 122851, 1-17. DOI: 10.1016/j.conbuildmat.2021.122851.
- [14] Chowdhury, S., Maniar, A. & Suganya, O.M. (2015). Strength development in concrete with wood ash blended cement and use of soft computing models to predict strength parameters. Journal of Advanced Research. 6, 907-913. DOI: 10.1016/j.jare.2014.08.006.
- [15] Boura, S.A. & Hesami, S. (2020). Laboratory evaluation of the performance of asphalt mixtures containing biomass fillers. Road Materials and Pavement Design. 21(7), 2040- 2053. DOI: 10.1080/14680629.2019.1572528.
- [16] Reshi, I. & Kumar, M. (2020). Stabilization of black cotton soil using sawdust ash and terrazyme. Journal of Green Engineering. 10(9), 6238-6248. ISSN: 1904-4720.
- [17] Ikeagwuani, C.C., Obeta, I.N. & Agunwamba, J.C. (2019). Stabilization of black cotton soil subgrade using sawdust ash and lime. Soils and Foundations. 59, 162-175. DOI: 10.1016/j.sandf.2018.10.004.
- [18] Saikaew, C. & Wiengwiset, S. (2012). Optimization of molding sand composition for quality improvement of iron castings. Applied Clay Science. 67-68, 26-31. DOI: 10.1016/j.clay.2012.07.005.
- [19] Bass, I. & Lawton, B. (2009). Lean Six Sigma Using SigmaXL and Minitab. New York: McGraw-Hill.
- [20] Montgomery, D.C. (2005). Design and Analysis of Experiments. 6th ed., New York: Wiley Interscience.
- [21] Ostrowski, J.G. & Menyhárt, J. (2020). Statistical analysis of machinery variance by Python. Acta Polytechnica Hungarica. 17(5), 151-168. DOI: 10.12700/APH.17.5.2020.5.8.
- [22] Ahmad, R. & Talib, N. (2011). Experimental study of vortex flow induced by a vortex well in sand casting. Revue de Métallurgie-Cahiers d Informations Techniques. 108, 129- 139. DOI: 10.1051/metal/2011049.
- [23] Campbell, J. (2003). Castings. 2 nd Edition, London: Butterworth-Heinemann.
- [24] Sika, R. & Ignaszak, Z. (2020). Cause-effect analysis using A&DM system for casting quality prediction. Archives of Foundry Engineering. 20(2), 5-12, DOI: 10.24425/afe.2020.131294
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-44ea02af-d5cd-4fac-a252-4a2b4dca0fb6