Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Organophosphate pesticide pollution is a severe global environmental issue, posing significant threats to human health. This study focuses on an organophosphate pesticide production site in North China. Controlled soil and groundwater were sampled using grid sampling and direct-push technology. Analytical methods such as headspace gas chromatography-mass spectrometry (GC-MS), gas chromatography (GC), and purge and trap GC-MS were employed to detect contaminants, including volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), pesticides, and heavy metals. The results indicate that the maximum exceedances in the contaminated soil for benzene, xylene, tri-chloromethane, Parathion, phosphorodithioic acid, Phorate, and Terbufos were 490.63, 411.22, 3459.09, 507.89, 277.29, 1946.15, and 281.5 times the standard limits, respectively. In groundwater, benzene, dichloromethane, trichloromethane, and Phorate exceeded the standard limits by 220.83, 1374, 1853.33, and 806.67 times, respectively, severely contaminating the local soil and groundwater and damaging the eco-system. Additionally, the carcinogenic risk values in the contaminated soil for benzene, toluene, phenylethane, xylene, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, Parathion, 1,2,4-trichlorobenzene, tri-chloromethane, naphthalene, and aniline were 2.75E–3, 1.36E–2, 1.034E–2, 9.72E–1, 1.5E–3, 8.9E–3, 1.85E–3, 4E–3, 3.48E–2, 2.7E–2, 1.03E–3, respectively. In groundwater, toluene, xylene, dichloromethane, and trichloromethane showed carcinogenic risk values of 8E–3, 1.86E–2, 1.23E–2, 3.07E–2, respectively, significantly exceeding the acceptable limits and posing severe threats to the health of nearby residents. Furthermore, the hazard quotient for non-carcinogenic effects of Cypermethrin in soil was 1.15, and 2,6-dichlorophenol in groundwater was 1.22, both slightly above the standard, indicating a mild impact on the health of nearby residents. Overall, this study provides a theoretical basis for subsequent remediation work at the contaminated site through pollutant analysis.
Czasopismo
Rocznik
Tom
Strony
89--197
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
autor
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
autor
- Institute of Urban Safety and Environmental Science, Beijing Academy of Science and Technology, Beijing 100054, China.
Bibliografia
- [1] CHENG S., Gas chromatography method for detecting organophosphorus pesticides in surface water, Brand Stand., 2023, (4), 82–84. DOI: 10.3969/j.issn.1674-4977.2023.04.025 (in Chinese).
- [2] KAUSHAL J., KHATRI M., ARYA S.K., A treatise on organophosphate pesticide pollution. Current strategies and advancements in their environmental degradation and elimination, Ecotoxicol. Environ. Saf., 2021, 1 (207), 111483. DOI: 10.1016/j.ecoenv.2020.111483.
- [3] CHOUDRI B.S., CHARABI Y., AHMED M., Pesticides and herbicides, Water Environ. Res., 2018, 90 (10), 1663–1678. DOI: 10.2175/106143018X15289915807362.
- [4] MENG X.Y., Risk assessment and thermal desorption remediation of organophosphorus pesticide contaminated soil, Tianjin University of Science and Technology, Tianjin 2016.
- [5] GE H.L., Environmental behavior and risk impact assessment of organic pesticide pollutants in Fenhe River basin, Chem. Eng. Equip., 2023 (11), 241–243. DOI: 10.19566/j.cnki.cn35-1285/tq.2023.11.006 (in Chinese).
- [6] HE X.L., NIE Y., WANG N., XIA H.N., LIU J.Y., LU Y.X., HE M., Present situation and control strategy of organophosphorus pesticide pollution, Environ. Ecol., 2021, 3 (10), 38–43. DOI: 2096-6830(2021)10-0038 -06 (in Chinese).
- [7] LI Q.S., Application of gas chromatography-mass spectrometry in the detection of organophosphorus pesticide residues in food, Chin. Food, 2023, 24, 147–149. DOI: 10.3969/j.issn.1000-1085.2023.24.047 (in Chinese).
- [8] LI X.X., Determination of six organophosphorus pesticides residues in water by gas chromatography- -mass spectrometry, Chemical Eng., 2023, 37 (11), 31–34. DOI: 10.16247/j.cnki. 23-1171/tq.20231131 (in Chinese).
- [9] CHEN M.H., CHEN F., Environmental investigation and pollution characteristics analysis of the retired site of a pesticide factory in South China, Environ. Dev., 2019, 31 (03), 149–151. DOI: 10.16647 /j.cnki.cn15-1369/X.2019.03.088 (in Chinese).
- [10] GUO Z.W., CHEN S.L., Zhang G.H., Evaluation of soil organic pesticide pollution in commercial bam-boo forests in Zhejiang province, Chin. J. Ecol., 2008, 27 (3), 434–438. DOI: 10.13292/j.1000-4890. 2008.0103 (in Chinese).
- [11] WANG JING, Investigation of soil environment and analysis of pollution causes in a pesticide factory, Res. Econ. Environ. Prot., 2023, 10, 126–131. DOI: 10.3969/j.issn.1673-2251.2023.10.031 (in Chinese).
- [12] JIMÉNEZ-JIMÉNEZ S., CASADO N., GARCÍA M.Á., MARINA M.L., Enantiomeric analysis of pyrethroids and organophosphorus insecticides, J. Chrom. A., 2019, 1605, 360345. DOI: 10.1016/j.chroma.2019.06.066.
- [13] MU X.Q., YAO Y.Y., PENG T., WANG D., MENG L.Y., WANG Y.Q., CHEN J., Current status of organophos-phorus pesticide residues in root and rhizome medicinal materials and research progress of rapid detection methods, Zhong Zhong Yao Za Zhi, 2021, 46 (22), 5736–5743. DOI: 10.19540/j.cnki.cjcmm.20210820. 101 (in Chinese).
- [14] DERBALAH A., CHIDYA R., JADOON W., SAKUGAWA H., Temporal trends in organophosphorus pesti-cides use and concentrations in river water in Japan, and risk assessment, J. Environ. Sci., 2019, 79, 135–152. DOI: 10.1016/j.jes.2018.11.019.
- [15] JARIYAL M., JINDAL V., MANDAL K., GUPTA V.K., SINGH B., Bioremediation of organophosphorus pesticide Phorate in soil by microbial consortia, Ecotoxicol. Environ. Saf., 2018, 159, 310–316. DOI: 10.1016/j.ecoenv.2018.04.063.
- [16] ZAREI-CHOGHAN M., JORFI S., SAKI A., JAAFARZADEH N., Spatial distribution, ecological and health risk assessment of organophosphorus pesticides identified in the water of Naseri artificial wetland, Iran, Mar. Poll. Bull., 2022, 179, 113643. DOI: 10.1016/j.marpolbul.2022.113643.
- [17] HJ25.3-2014, Technical Guidelines for Risk Assessment of Contaminated Sites, Beijing, China’s Min-istry of Environmental Protection, 2014.
- [18] SANG L.C., LI Q.Z., LI L., Cloning of Oph2 gene, an organophosphorus pesticide degrading enzyme, and study on the degradation effect of methyl Parathion, J. Food Saf. Qual. Insp., 2022, 13 (17), 5688 –5694. DOI: 10.19812/j.cnki.jfsq11-5956/ts.2022.17.022 (in Chinese).
- [19] WANG H.L., Occupational hazards and protection of trichloromethane, Mod. Occup. Saf., 2014 (5), 110–111. DOI: 10.3969/j.issn.1671-4156.2014.05.044 (in Chinese).
- [20] YANG J., LI G.H., Identification of components and degradation pathway of secondary products from a contaminated site of a pesticide factory, Proc. Science and Technology Annual Meeting of Chinese Society of Environmental Sciences, Chinese Society of Environmental Sciences, Beijing, 2023 (in Chinese).
- [21] SHI W.G., HUANG Q.Z., XU Z.M., CUI A.Y., WANG M.Y., Studies on the synthesis of Phorate, Hebei Chem. Ind., 1996 (4), 22–24 (in Chinese).
- [22] CHEN J., ZHOU G., DENG Y., CHENG H., SHEN J., GAO Y., PENG G., Ultrapreconcentration and determination of organophosphorus pesticides in water by solid-phase extraction combined with dispersive liquid-liquid microextraction and high-performance liquid chromatography, J. Sep. Sci., 2016, 39 (2), 272–278. DOI: 10.1002/jssc.201501007.
- [23] JAN Y.H., RICHARDSON J.R., BAKER A.A., MISHIN V., HECK D.E., LASKIN D.L., LASKIN J.D., Novel approaches to mitigating Parathion toxicity. Targeting cytochrome P450-mediated metabolism with menadione, Ann. NY Acad. Sci., 2016, 1378 (1), 80–86. DOI: 10.1111/nyas.13156.
- [24] WU Y., SONG J., ZHANG Q., YAN S., SUN X., YI W., PAN R., CHENG J., XU Z., SU H., Association between organophosphorus pesticide exposure and depression risk in adults. A cross-sectional study with NHANES data, Environ. Poll., 2023, 316 (1), 120445. DOI: 10.1016/j.envpol.2022.120445.
- [25] ZHANG B., XUAN F.Q., LI D.M., Research status and prospects of treatment technology for chloroform in water, Journal of Hubei Polytechnic University, 2014, 30 (3), 27–31 + 63. DOI: 10.3969/j.issn.2095-4565. 2014.03.007 (in Chinese).
- [26] SCHLOSSER P.M., BALE A.S., GIBBONS C.F., WILKINS A., COOPER G.S., Human health effects of dichloromethane: key findings and scientific issues, Environ. Health Persp., 2015, 123 (2), 114–119. DOI: 10.1289/ehp.1308030.
- [27] LIANG Y., Environmental investigation of arsenic pollution of groundwater in an industrial site environmental investigation, Environ. Prot. Sci., 2020, 46 (05), 138–142. DOI: 10.16803/j.cnki.issn.1004 -6216.2020.05.024.
- [28] SU Y.P., LI Q., TAO H.F., HE Y.J., LI X.W., Causes of excessive arsenic in groundwater of Kuitun River Basin in Xinjiang, J. Changjiang River Scientific Research Institute, 2022, 39 (3), 54–59. DOI: 10.11988 /ckyyb.20201188 (in Chinese).
- [29] RAJESH KUMAR S., JAYAVIGNESH V., SELVAKUMAR R., SWAMINATHAN K., PONPANDIAN N., Facile synthesis of yeast cross-linked Fe3O4 nanoadsorbents for efficient removal of aquatic environment contaminated with As(V), J. Colloid Interface Sci., 2016, 15 (484), 183–195. DOI: 10.1016/j.jcis. 2016.08.081.
- [30] LIČINA V., AKŠIĆ M.F., TOMIĆ Z., TRAJKOVIĆ I., ANTIĆ MLADENOVIĆ S., MARJANOVIĆ M., RINKLEBE J., Bioassessment of heavy metals in the surface soil layer of an opencast mine aimed for its rehabilitation, J. Environ. Manage., 2017, 15 (186), 240–252. DOI: 10.1016/j.jenvman.2016.06.050.
- [31] WU Y.Y., LI X.H., CUI X.A., ZHANG Y., Impact of effluent from a sewage treatment plant on water quality in plain river network region in Taihu Lake Basin, Environ. Dev., 2021, 33 (3), 80–87 + 91. DOI: 10.16647/j.cnki.cn15-1369/X.2021.03.014 (in Chinese).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-44e1c185-c534-44ce-90f5-2ddb7cc5ec9d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.