Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The main topic of this study is the mathematical modelling of bubble size distributions in an aerated stirred tank using the population balance method. The air-water system consisted of a fully baffled vessel with a diameter of 0.29 m, which was equipped with a six-bladed Rushton turbine. The secondary phase was introduced through a ring sparger situated under the impeller. Calculations were performed with the CFD software CFX 14.5. The turbulent quantities were predicted using the standard k-ε turbulence model. Coalescence and breakup of bubbles were modelled using the MUSIG method with 24 bubble size groups. For the bubble size distribution modelling, the breakup model by Luo and Svendsen (1996) typically has been used in the past. However, this breakup model was thoroughly reviewed and its practical applicability was questioned. Therefore, three different breakup models by Martínez-Bazán et al. (1999a, b), Lehr et al. (2002) and Alopaeus et al. (2002) were implemented in the CFD solver and applied to the system. The resulting Sauter mean diameters and local bubble size distributions were compared with experimental data.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
331--348
Opis fizyczny
Bibliogr. 41 poz., rys.
Twórcy
autor
- Institute of Chemical Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
autor
- Institute of Chemical Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
autor
- Czech Technical University in Prague, Technická 4, 166 07 Prague 6, Czech Republic
Bibliografia
- 1. Ahmed S. U., Ranganathan P., Pandey A., Sivaraman S., 2010. Computational fluid dynamics modeling of gas dispersion in multi impeller bioreactor. J. Biosci. Bioeng., 109, 588-597. DOI: 10.1016/j.jbiosc.2009.11.014.
- 2. Alopaeus V., Koskinen J., Keskinen K.I., Majander J., 2002. Simulation of the population balances for liquidliquid systems in a nonideal stirred tank. Part 2 - parameter fitting and the use of the multiblock model for dense dispersions. Chem. Eng. Sci., 57, 1815-1825. DOI: 10.1016/S0009-2509(02)00067-2.
- 3. Alves S.S., Maia C.I., Vasconcelos J.M.T., 2002. Experimental and modelling study of gas dispersion in a double turbine stirred tank. Chem. Eng. Sci., 57, 487-496. DOI: 10.1016/S0009-2509(01)00400-6.
- 4. Andersson R., Andersson B., 2006. On the breakup of fluid particles in turbulent flows. AIChE J., 52, 2020-2030. DOI: 10.1002/aic.10831.
- 5. Bakker A., van den Akker H.E.A., 1994. A computational model for the gas-liquid flow in stirred reactors. Chem. Eng. Res. Des., 72, 594-606.
- 6. Clift R., Grace J.R., Weber M.E., 1978. Bubbles, drops, and particles. Academic Press, New York, USA.
- 7. Coroneo M., Montante G., Paglianti A., Magelli F., 2011. CFD prediction of fluid flow and mixing in stirred tanks: Numerical issues about the RANS simulations. Comput. Chem. Eng., 35, 1959-1968. DOI: 10.1016/j.compchemeng.2010.12.007.
- 8. Fajner D., Pinelli D., Ghadge R. S., Montante G., Paglianti A., Magelli F., 2008. Solids distribution and rising velocity of buoyant solid particles in a vessel stirred with multiple impellers. Chem. Eng. Sci., 63, 5876-5882. DOI: 10.1016/j.ces.2008.08.033.
- 9. Gimbun J., Rielly C.D., Nagy Z.K., 2009. Modelling of mass transfer in gas-liquid stirred tanks agitated by Rushton turbine and CD-6 impeller: A scale-up study. Chem. Eng. Res. Des., 87, 437-451. DOI: 10.1016/j.cherd.2008.12.017.
- 10. Gordon R.G., 1968. Error bounds in equilibrium statistical mechanics. J. Math. Phys., 9, 655-663. DOI: 10.1063/1.1664624.
- 11. Hesketh R.P., Etchells A.W., Russell T.W.F., 1991. Experimental observations of bubble breakage in turbulent flow. Ind. Eng. Chem. Res., 30, 835-841, DOI: 10.1021/ie00053a005.
- 12. Kálal Z., Jahoda M., Fořt I., 2014. CFD prediction of gas-liquid flow in an aerated stirred vessel using the population balance model. Chem. Process Eng., 35, 55-73. DOI: 10.2478/cpe-2014-0005.
- 13. Kerdouss F., Bannari A., Proulx P., Bannari R., Skrga M., Labrecque Y., 2008. Two-phase mass transfer coefficient prediction in stirred vessel with a CFD model. Comput. Chem. Eng., 32, 1943-1955. DOI:10.1016/j.compchemeng.2007.10.010.
- 14. Khopkar A.R., Rammohan A.R., Ranade V.V., Dudukovic M.P., 2005. Gas-liquid flow generated by a Rushton turbine in stirred vessel: CARPT/CT measurements and CFD simulations. Chem. Eng. Sci., 60, 2215-2229. DOI:10.1016/j.ces.2004.11.044.
- 15. Kumar S., Ramkrishna D., 1996. On the solution of population balance equations by discretization - I. A fixed pivot technique. Chem. Eng. Sci., 51, 1311-1332. DOI: 10.1016/0009-2509(96)88489-2.
- 16. Laakkonen M., Moilanen P., Alopaeus V., Aittamaa J., 2007. Modelling local bubble size distributions in agitated vessels. Chem. Eng. Sci., 62, 721-740. DOI: 10.1016/j.ces.2006.10.006.
- 17. Lasheras J.C., Eastwood C., Martínez-Bazán C., Montanes J.L., 2002. A review of statistical models for the break-up of an immiscible fluid immersed into a fully developed turbulent flow. Int. J. Multi. Flow, 28, 247-278. DOI: 10.1016/S0301-9322(01)00046-5.
- 18. Lehr F., Millies M., Mewes D., 2002. Bubble-size distributions and flow fields in bubble columns. AIChE J., 48, 2426-2443. DOI: 10.1002/aic.690481103.
- 19. Liao Y., Lucas D., 2009. A literature review of theoretical models for drop and bubble breakup in turbulent dispersions. Chem. Eng. Sci., 64, 3389-3406. DOI: 10.1016/j.ces.2009.04.026.
- 20. Liao Y., Lucas D., 2010. A literature review on mechanisms and models for the coalescence process of fluid particles. Chem. Eng. Sci., 65, 2851-2864. DOI: 10.1016/j.ces.2010.02.020.
- 21. Lo S., 1996. Application of the MUSIG model to bubbly flows. AEAT-1096, AEA Technology.
- 22. Luo H., Svendsen H.F., 1996. Theoretical model for drop and bubble breakup in turbulent dispersions. AIChE J., 42, 1225-1233. DOI: 10.1002/aic.690420505.
- 23. Marchisio D.L., Fox R.O., 2005. Solution of population balance equations using the direct quadrature method of moments, J. Aerosol Sci., 36, 43-73. DOI: 10.1016/j.jaerosci.2004.07.009.
- 24. Marchisio D.L., Fox R.O., 2013. Computational models for polydisperse particulate and multiphase systems. Cambridge University Press, New York, USA.
- 25. Martínez-Bazán C., Montanes J.L., Lasheras J.C., 1999a. On the breakup of an air bubble injected into fully developed turbulent flow. Part 1. Breakup frequency. J. Fluid Mech., 401, 157-182. DOI: 10.1017/S0022112099006680.
- 26. Martínez-Bazán C., Montanes J.L., Lasheras J.C., 1999b. On the breakup of an air bubble injected into fully developed turbulent flow. Part 2. Size PDF of the resulting daughter bubbles. J. Fluid Mech., 401, 183-207. DOI: 10.1017/S0022112099006692.
- 27. McGraw R., 1997. Description of aerosol dynamics by the quadrature method of moments. Aerosol Sci. Tech., 27, 255-265. DOI: 10.1080/02786829708965471.
- 28. Mendelson H.D., 1967. The prediction of bubble terminal velocities from wave theory. AIChE J., 13, 250-253. DOI: 10.1002/aic.690130213.
- 29. Montante G., Horn D., Paglianti A., 2008. Gas-liquid flow and bubble size distribution in stirred tanks. Chem. Eng. Sci., 63, 2107-2118. DOI: 10.1016/j.ces.2008.01.005.
- 30. Montante G., Paglianti A., Magelli F., 2007. Experimental analysis and computational modelling of gas-liquid stirred vessels. Chem. Eng. Res. Des., 85, 647-653. DOI: 10.1205/cherd06141.
- 31. Narsimhan G., Gupta J.P., Ramkrishna D., 1979. A model for transitional breakage probability of droplets in agitated lean liquid-liquid dispersions. Chem. Eng. Sci., 34, 257-265. DOI: 10.1016/0009-2509(79)87013-X.
- 32. Prince M.J., Blanch H.W., 1990. Bubble coalescence and break-up in air-sparged bubble columns. AIChE J., 36, 1485-1499. DOI: 10.1002/aic.690361004.
- 33. Ranganathan P., Sivaraman S., 2011. Investigations on hydrodynamics and mass transfer in gas–liquid stirred reactor using computational fluid dynamics. Chem. Eng. Sci., 66, 3108-3124. DOI: 10.1016/j.ces.2011.03.007.
- 34. Rhie C.M., Chow W.L., 1983. Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J., 21, 1525-1532. DOI: 10.2514/3.8284.
- 35. Risso F., Fabre J., 1998. Oscillations and breakup of a bubble immersed in a turbulent field. J. Fluid Mech., 372, 323-355. DOI: 10.1017/S0022112098002705.
- 36. Rutherford K., Mahmoudi S M.S., Lee K.C., Yianneskis M., 1996. The influence of Rushton impeller blade and disk thickness on the mixing characteristics of stirred vessels. Chem. Eng. Res. Des., 74, 369-378.
- 37. Scargiali F., D'Orazio A., Grisafi F., Brucato A., 2007. Modelling and simulation of gas-liquid hydrodynamics in mechanically stirred tanks. Chem. Eng. Res. Des., 85, 637-646. DOI: 10.1205/cherd06243.
- 38. Selma B., Bannari R., Proulx P., 2010. Simulation of bubbly flows: Comparison between direct quadrature method of moments (DQMOM) and method of classes (CM). Chem. Eng. Sci., 65, 1925-1941. DOI: 10.1016/j.ces.2009.11.018.
- 39. Vanni M., 2000. Approximate population balance equations for aggregation-breakage processes. J. Coll. Int. Sci., 221, 143-160. DOI: 10.1006/jcis.1999.6571.
- 40. Wang T., Wang J., Jin Y., 2003. A novel theoretical breakup kernel function for bubbles/droplets in a turbulent flow. Chem. Eng. Sci., 58, 4629-4637. DOI: 10.1016/j.ces.2003.07.009.
- 41. Yuan C., Fox R.O., 2011. Conditional quadrature method of moments for kinetic equations. J. Comp. Phys., 230, 8216-8246. DOI: 10.1016/j.jcp.2011.07.020.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-44e1c028-6dd4-4435-8a26-9d3fc19de88c