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Radial basis function neural networks (RBF NNs) are one of the most useful tools in the classification
of the sonar targets. Despite many abilities of RBF NNs, low accuracy in classification, entrapment
in local minima, and slow convergence rate are disadvantages of these networks. In order to overcome
these issues, the sine-cosine algorithm (SCA) has been used to train RBF NNs in this work. To evaluate
the designed classifier, two benchmark underwater sonar classification problems were used. Also, an
experimental underwater target classification was developed to practically evaluate the merits of the RBF-
based classifier in dealing with high-dimensional real world problems. In order to have a comprehensive
evaluation, the classifier is compared with the gradient descent (GD), gravitational search algorithm
(GSA), genetic algorithm (GA), and Kalman filter (KF) algorithms in terms of entrapment in local
minima, the accuracy of the classification, and the convergence rate. The results show that the proposed
classifier provides a better performance than other compared classifiers as it classifies the sonar datasets
2.72% better than the best benchmark classifier, on average.
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1. Introduction

RBF NNs are one of the most useful tools for soft
computing, by which non-linear optimisation problems
can be solved. In general RBF NNs are used for pattern
classification, data estimation, and function approxi-
mation (Mirjalili et al., 2014; Abedifar et al., 2013;
Nguyen et al., 2014). Not only RBF NNs have the ad-
vantage of strong global approximation capability, but
also they benefit from other powerful characteristics
such as a compact structure, the ability to estimate
any continuous network, they have the benefits of easy

design, good generalisation, strong tolerance to input
noise, and online learning ability (Park, Sandberg,
1993; Du, Swamy, 2014; Yu et al., 2011).

Regardless of its application, the special ability of
RBF NNs is learning (Auer et al., 2008). To be more
precise, learning means that these networks, like the
human brain, can learn from an experience or experi-
ment. The target of this process is to minimise some er-
ror criterion by tuning the parameters of the network.
An RBF NN with a common architecture has a sin-
gle hidden layer which consists of three main parame-
ters: the connection weights, widths, and centres. The
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conventional method for training RBF NN is a train-
ing process with two sequential stages. In the first
stage, some unsupervised clustering algorithms such
as k-means (Yu-Qing et al., 2016), vector quantisa-
tion (Vogt, 1993), or decision trees (Hyontai, 2011)
are used to find the centres of the hidden layer and the
widths. In the second stage, the connection weights
between the hidden layer and the output layer are
learned. Usually, the weights are discovered linearly
using the simple linear least squares (LS), the orthog-
onal least squares (OLS) algorithms (Lin et al., 2009;
Chen et al., 1999), or a gradient descent algorithm
(Neruda, Kudova, 2005).

Although RBF NNs have many advantages, train-
ing a network using the conventional approaches comes
with common limitations in the terms of convergence
speed and prediction accuracy, especially for multi-
modal search space such as sonar target classification.
For example, when using a classical gradient descent
method, trapping in local minima is highly likely. Ad-
ditionally, in most conventional algorithms and gradi-
ent descent methods the initial parameters’ setting is
very important (Fasshauer, Zhang, 2007). As a re-
sult, many researchers were motivated to investigate
the use of meta-heuristic algorithms as an alternative
approach for training RBF NNs due to the mentioned
reasons.

The advantage of meta-heuristic algorithms is
searching in a better range regardless of the size of
the search area. Meta-heuristic algorithms have some
outstanding features including being gradient free
(Mirjalili et al., 2012), solving large scale problems
(Khishe et al., 2017), achieving reliable and robust op-
tima (Mosavi, Khishe, 2017), simple design, and flex-
ible implementation (Mosavi et al., 2016). They also
have a higher efficiency in searching for a global solu-
tion when the search space is highly multi-modal and
challenging such as sonar target classification (Yang,
2014; Mirjalili et al., 2014; Faris et al., 2016).

Some of these algorithms used for training RBF
NNs as part of different training schemes are genetic al-
gorithms (Ding et al., 2012; Neruda, Kudova, 2005;
Chen et al., 1999; Zhang et al., 2014), learning au-
tomata (Khishe, Aghababaee, 2013), particle swarm
optimisation (Chen et al., 2009; Wu et al., 2010;
Zhong et al., 2014), ant colony optimisation (Chun-
Tao et al., 2007), differential evolution (Yu, He, 2006),
biogeography based optimiser (Aljarah et al., 2016),
moth-flame optimiser (Faris et al., 2017), and firefly
algorithm (Horng et al., 2012).

An interesting training method for RBF NNs is to
search for all the required parameters simultaneously
in just one stage. Despite the simple look of the train-
ing scheme of this approach, it might have some chal-
lenges. The main challenge is that in the case of the
sonar target classification problem, the search space
becomes too large and therefore the problem is con-

sidered a complex and non-linear optimisation task
(Chen et al., 2009). This is the main reason why some
evaluation based meta-heuristic methods like GA per-
form slowly and require more iterations to converge
(Gan et al., 2012).

To sum up, on the one hand, there is a well known
theorem in literature called No Free Lunch (NFL) the-
orem which proves that there is no meta-heuristic al-
gorithm accruing the best answer for all optimisation
problems. So, some algorithms are better for partic-
ular optimisation problems rather than other meta-
heuristic algorithms (Ho, Pepyne, 2002). This is why
this field of study is actively open and many re-
searchers are working on it. On the other hand, refer-
ence (Mirjalili, 2016) proved that the SCA is a pow-
erful algorithm to avoid getting stuck in local minima
when working with a high-dimensional dataset. These
two motivations convinced us to train an RBF NN us-
ing the SCA for the sake of designing an efficient and
reliable sonar data set classifier. The current approach
in this work is based on simultaneously optimising all
the parameters of the network including the centres,
widths, and the connection weights.

To the best of our knowledge, this is the first time
the SCA algorithm is used for training RBF NNs. In or-
der to evaluate the performance of the proposed classi-
fier, the experiments in this work are carried out in two
steps: first, we assess the SCA with two well regarded
sonar dataset classification problems and second, we
compare it to a well known classical training method
which is commonly used in literature for training RBF
NNs. In this regard, we developed a real world chal-
lenging underwater sonar data set to benchmark and
compare the training algorithms.

The rest of the paper is organised as follows: In
Sec. 2, RBF NNs are trained by the proposed algo-
rithm. In Sec. 3, the experimental results are described
and finally, a conclusion is given in Sec. 4.

2. Training RBF NNs using meta-heuristic
algorithms

In general, there are three methods for using meta-
heuristic algorithms to train RBF NNs. The first
method is to use meta-heuristic networks to find the
combination of connection weight, output node bias,
propagation parameters of the basic function, and vec-
tors of the hidden layer centre for having the least
amount of error in an RBF NN. The second method is
to use meta-heuristic networks to find the proper struc-
ture of an RBF NN in a specific problem, and the last
method involves using meta-heuristic networks to find
the parameters of gradient learning algorithm such as
learning rate and movement size. In this paper, the al-
gorithm is applied to RBF NNs using the first method.
In order to design a training algorithm for RBF NNs,
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some parameters must be displayed properly in the al-
gorithm. These parameters are the connection weights,
the output node bias, propagation parameters of the
hidden layer’s basic function, and vectors of the hid-
den layer centres. Therefore, a general description of
an RBF NN’s training methodology can be represented
as Fig. 1.

Fig. 1. Block diagram of a typical RBF NN.

2.1. Training RBF NN using the SCA

In general, there are three methods to display the
combination of unknown parameters: vector, matrix,
and binary state (Mirjalili et al., 2014). To train an
RBF NN, all weights, biases, propagation parameters,
and centres must be known. Each of these representa-
tion modes has its advantages and disadvantages that
can be useful for a particular problem.

In this paper, since we are not dealing with com-
plex RBF NNs, the vector representation is used. As
previously mentioned, RBF NNs can be trained by se-
lecting the optimal values for parameters indicated in
Table 1.

Table 1. The parameters of an RBF NN need
to be optimised.

No Parameters Description
1 W Weights between the hidden layers

and the output layer
2 α Propagation parameters of the hid-

den layer’s basic function
3 c Centr evectors of the hidden layer
4 β Bias parameters of the output layer

neurons

The number of neurons of the hidden layer in
RBF NNs is very important. Using neurons more than
needed, will lead to overlearning of network and in-
creases structure complexity and algorithm execution
time. According to the reference (Abu-Mouti, El-
Hawary, 2012) and the investigations carried out, 10 is
chosen for the number of the hidden layer neurons.
By increasing the number of hidden layer neurons, the
network performance is not significantly increased, al-
though, space and time complexity of the network in-
creases dramatically. The search agents of the SCA al-
gorithm include weights (w), propagation (α), centre

vectors (c), and bias vectors (β). A search agent in the
SCA can be represented as Eq. (1):

Pi = [wαcβ]. (1)

As mentioned, the ultimate goal of the learning
methods is to train RBF NNs. In this regard, each
sample of training should include the value of the fit-
ness function for all search agents. In this paper, the
fitness function of the search agent (for all samples of
training) is calculated using the mean squared error
(MSE), which is represented by Eq. (2):

MSE = 1

k

k

∑
i=1

(y − ŷ)2. (2)

In this equation, as shown in Fig. 1, y demonstrates
the desired training output and ŷ indicates the output
of the evaluated RBF NN. Consequently, the ultimate
goal is to set the optimal parameters to minimise the
MSE value.

3. Experiments and results

In this section, to test the efficiency of the designed
classifier, two benchmarks of underwater sonar classi-
fication problems were used. Also, an experimental un-
derwater target classification was developed to practi-
cally evaluate the merits of the RBF based classifier in
dealing with high-dimensional real word problems. To
have a comprehensive comparison, in addition to the
SCA algorithm, the PBIL, ES, ACO, GA, and PSO
algorithms are also used to train this network. The
functionality of these classifiers are tested in terms of
classification rate, getting stuck in local minima, and
convergence speed. The parameters and initial values
of these algorithms are shown in Table 2.

All algorithms were performed under the same con-
ditions to achieve fairness in comparative experiments.
Among them, the population and the iteration time
was set to 30 and 500 respectively. To reduce the im-
pacts of random factors in the algorithm on the re-
sults, all the compared algorithms were run individu-
ally 30 times in each function and averaged as the final
running result. On the purpose of measuring experi-
ment results, standard deviation (STD), and average
results (AVG) were employed to evaluate the results.
Note that the best results will be bolded (take one
in the case of juxtaposition). Wilcoxon sign-rank test
method (Gorman, Sejnowski, 1998) was exerted to
verify whether RBF-SCA has obvious advantages over
pairwise comparison. If the p-value produced by the
comparison is below the significant level of 0.05 in this
case, it means that the achievements of the algorithm
in pairwise comparison have obvious advantage in the
statistical sense. On the other hand, it is considered
that the difference between the two contestants is not
noticeable in the statistical sense.
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Table 2. Parameters and initial values of the training algorithms.

Parameter Algorithm Value

GA

Number of generation 4000
Choice type Roulette wheel

Type of combination Single point
Rate of combination 0.8

Type of growth Steady
Rate of growth 0.05

GD Learning parameter η = 0.01
Covariance matrix of state estimation error R = 40I

KF Covariance matrix of artificial noise ωk Q = 40I

Covariance matrix of artificial noise νk PO = 40I

GSA

Number of search agents 60
G0 1
α 20

Maximum iteration 500

The p-value achieved from this expression is shown
in Tables 3–5 (see Subsec. 3.5), where the p-values were
all lower than 0.05 when compared with traditional al-
gorithms. Therefore, the RBF-SCA has significant ad-
vantage in these problems compared to the traditional
algorithms.

3.1. Gorman and Sejnowski Dataset

The first data set used in this paper is derived
from the Gorman and Sejnowski experiment in refer-
ences (Gorman, Sejnowski, 1998; connectionist bench).
In this experiment, there are two types of echoes (re-
turn signal), the first one is related to a metal cylinder
(plays the role of a real target) and the second one is
from a rock of the same size as the rock (plays the
role of clutter or a false target). In this experiment,
a 5-foot-long metal cylinder and a rock of the same
size were placed in the sandy seabed, and a wide-band
linear FM chirp pulse (ka = 55/6) was transmitted to
them. Based on the SNR of the received echo, out of
1200 collected echoes, 208 of those whose SNR was be-
tween 4 dB and 15 dB, were selected. 111 echoes, out of
these 208 selected ones, are related to the metal cylin-
der and 97 of them are related to the rock. Figure 2
shows a sample of the received echoes from the rock
and the metal cylinder. It can be seen that the echoes
from the real target (metal cylinder) and the clutter
(rock) are very similar, therefore they cannot be clas-
sified by a linear or a low degree non-linear classifier.

The preprocessing used to obtain the spectral cov-
erage is shown in Fig. 3. In Fig. 3a a set of sampling
windows is shown; Fig. 3b illustrates a set of sam-
pling windows on the two-dimensional spectrogram of
the Fourier transform of the sonar echo. Consequently,
spectral coverage is obtained by accumulating the ef-

a)

b)

Fig. 2. Sample of the received echoes from the rock (a)
and the metal cylinder (b).

fects of each window. In this experiment, the spectral
coverage is formed by a set of 60 spectral samples that
were normalised between 0 and 1. Each of these num-
bers represents the total energy in the relevant sam-
pling window; for instance, the energy of the first win-
dow (η = 0) after normalisation forms the first num-
ber of the 60 numbers in the feature vector. The de-
tailed information of the return echoes from the rock
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a)

b)

Fig. 3. Preprocessing used to obtain spectral coverage: a) sampling windows, b) applying a set of sampling windows on
the two-dimensional spectrogram.

and the metal cylinders can be observed in references
(Gorman, Sejnowski, 1998; connectionist bench).

3.2. Common Data Set 2015 (CDS2015)

The second data set used to evaluate the designed
classifier is the Common Data set (CDS2015). This is
a range of bathymetric and backscatter datasets col-
lected using the latest shallow water survey techniques
so that comparisons can be made and the merits of the
different approaches are investigated. To this end, ar-
eas were chosen in Plymouth Sound andWembury Bay,
which offered a good variety of depth, seabed types,
and sub-sea conditions, as shown in Fig. 4.

Shallow water term has been clearly defined as wa-
ter depths lower than 200 meters. However, in this
particular collection, the depths never exceed 40 me-
ters. In order to obtain such a performance and quality
in the collected data, an exceptionally high standard
given the safety of navigation implication of sub-40-
meter surveying is required.

This shallow water dataset provides a unique op-
portunity to experience the current technological ca-
pabilities and advancements made by Kongsberg Mar-
itime in the shallow water survey market. Raw data
have been provided throughout, with no modifications
or deviations, from the reference (Gutiérrez, Zhao,

Fig. 4. Processed survey area 1.

2015). Therefore, CDS2015 is completely raw, and it
has had no filtering, either statistical or manual one.

As outlined by the data collection instruction, the
four mentioned targets were traversed using the guide-
lines at set speeds, set swath angles, set direction, and
within a set distance to the line. For more details, the
descriptions of the targets can be found in reference
(Gutiérrez, Zhao, 2015). To better understand the
types of objects, these four targets are illustrated in
Fig. 5.
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Fig. 5. Four various targets in CDS2015.

3.3. Experimental sonar dataset

This section tries to briefly introduce the utilised
sonar dataset, collected by the authors. The sonar data
set was obtained from experiments conducted on the
shores of the Caspian sea. This region, with a depth of
40 to 100 meters, is assumed to be a shallow water area.
This data set was collected by the sonobuoy shown
in Fig. 6a. Also, information about environmental pa-
rameters such as temperature, salinity, water depth,
wind speed, and seabed type has been obtained from
the oceanographic buoy of Nowshahr Ports and Mar-
itime Organization (PMO), which is shown in Fig. 6b
(Khishe, Mosavi, 2017).

Fig. 6. Sonobuoys used for sonar dataset acquisition:
a) designed sonobuoy, b) oceanographic sonobuoy.

In this experiment, 6 objects including 4 targets
and 2 non-targets have been placed on the homogenous

seabed. The transmitted ping is a wideband linear fre-
quency modulated signal which covers the frequency
range of 5–110 Hz. An electrical motor rotates the ob-
jects (at the bottom of the sea) through 180 degrees,
with one degree precision.

A good data set plays a vital role in the sonar data
classification. Due to the high volume of raw data ob-
tained in the previous step, a great load of computing
shall be expected. In order to reduce the computational
load of the classifier and the feature extractor, the pro-
cess of revealing the probable targets from the total re-
ceived data is necessary. For this purpose, the intensity
of the received signal is used.

Due to the shallow depth of the sea in this area,
phenomena such as multi-path propagation, secondary
reflections, and reverberation are inevitable. The ef-
fects of these artifacts will be eliminated after the de-
tection step and before the feature extraction step,
using a filter in the field of matched filters. In the
next step, the inverse filtering will be used to recover
the original reflection signal. This stage is based on the
fact that it is much easier to separate these artifacts in
the field of the matched filter than in the time domain.
The whole preprocessing is executed in four steps as
follows:

• Scaling: In order to eliminate the effect of the
amplifier’s gain and filter in the data collection
stage, the raw signal is converted to the scaled
signal.
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• Down-sampling: The main sampling rate is
2 MHz, which is much higher than the bandwidth
of the main signal. In order to reduce the sampling
rate without losing useful information, reference
(Preston, 2004) has been used. In this reference,
for each ping a fixed number of points is selected
in the sampling stage, using environmental infor-
mation such as water depth, operating frequency,
and monitored area. Here, 2048 points are selected
so that valuable information for feature extraction
is not lost.

• The process of removing artifacts and
multi-path effects: In this method, by using the
cross-correlation of the back-scattered signal with
the signal sent at each angle, the location of the
maximum output of the matched filter named x
is determined. A window that covers the range
[x – left: x + right] is then applied to the sig-
nal. In this example, the right point is equal to
300 and the left point is equal to 211, which forms
a 512-point window. This segmented signal is zero-
padded in order to maintain the original signal size

a) b) c)

d) e) f)

Fig. 7. Sample echoes returned from the target and non-target objects:
a) non-target 1, b) non-target 2, c) target 1, d) target 2, e) target 3, f) target 4.

and to eliminate the effect of the sent signal re-
moval by Eq. (3)

H(k) = X(k)
∣X(k)∣2 + c

. (3)

In this equation X(k) is the Fourier transform
of the sent signal and c = 0.0025 ⋅ max(∣X(k)∣2)
is added to the relation to solve the singularity
problem. The output of this step is a pure back-
scattered signal without the effects of the artifacts.

• Normalisation: At last, we scale each target in
such a way that each one of them has the same tar-
get strength. For this purpose, each back-scattered
signal is divided by the SRA, which is the largest
domain that is less than 90% of the maximum re-
ceived domains.

Figure 7 demonstrates a set of signals received from
different targets and non-targets that are a function of
the frequency and direction of the objects. Further-
more, after target detection, feature extraction stage
must be executed.
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3.4. Feature extraction

After preprocessing, the detected echoes are trans-
formed into the frequency domain (named S(k)) and
then delivered to the feature extraction stage. In this
step, first, the power spectral density (PSD) function
of the detected signal is calculated by Eq. (4):

∣S(k)∣2 = S2
r (k) + S2

i (k), (4)

where S2
r (k) and S2

i (k) are the real and the imagi-
nary parts of the detected signal’s Fourier transform,
respectively. In the next step, the spectral energy is fil-
tered by a Mel-scaled triangular filter. Therefore, the
output energy of the l-th filter is calculated by Eq. (5):

E(l) =
N−1

∑
k=0

∣S(k)∣2 Hl(k), (5)

where N is the number of discrete frequencies used for
FFT in the preprocessing stage and Hl(k) is the trans-
fer function of the given filter, where l = 0,1, ...,Ml.

The dynamic range of the Mel-scale filtered energy
spectrum is compacted by the logarithmic function as
Eq. (6):

E(l) = log(E(l)). (6)

Mel-scaled frequency cepstral coefficients (MFCC)
are converted back to the time domain using discrete
cosine transform (DCT), shown in Eq. (7):

C(n) =
M

∑
l=1

e(l) cos(n(l − 1

2
) π

M
). (7)

Finally, the feature vector will be in the form of
Eq. (8):

Xm = (c(0) c(1) . . . c(P − 1))T
. (8)

Fig. 8. Entire classification process: preprocessing, detection, feature extraction, and classifier.

The entire classification process includes pre-
processing, detection, feature extraction, and classifier
designing, which is shown in Fig. 8.

3.5. The simulation result

After preprocessing on sonar recursive echoes and
obtaining a normalised dataset within the range of
(0, 1), in this part of the paper the dataset with di-
mensions 208× 60 (400 samples, each of which has
128 features), 625× 144, and 400× 128 for Gorman &
Sejnowski, CDS2015, and developed data set, respec-
tively, is applied to an RBF NN which is trained by
various algorithms. The results are shown in Figs 9–11
and Tables 3–5 below.

As shown in Figs 9–11, the convergence rates of
RBF-SCA have the fastest convergence rate among
all the benchmark classifiers, followed by RBF-GSA
and RBF-GA, respectively. At the same time, RBF-
GD and RBF-KF, with steady convergence curves, fail
to reach a convincing solution after a certain amount of
iterations. This is because of local optima stagnation
which indicates that RBF-SCA can still show better
capability in dealing with high-dimensional real world
problems.

From the data in Tables 3–5, it can be observed
that the average results of the RBF-SCA classifier with
91.8944% of correct classification rate has the best per-
formance, and the RBF-GD classifier with 86.9231%
has the weakest functionality. Due to having oscillation
nature and too many local minima, the probability of
getting trapped in local minima for algorithms such
as GD is very high. The weak performance of GD
and KF algorithms confirms this issue, while SCA,
GSA, and GA algorithms with random nature and not
using derivatives have better performance than other
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Fig. 9. Convergence curves of various classifiers applied to Gorman & Sejnowski dataset.

Fig. 10. Convergence curves of various classifiers applied to CDS2015 dataset.

Fig. 11. Convergence curves of various classifiers applied to developed dataset.

algorithms. On the other hand, according to this study,
the SCA algorithm performs better in this type of data,
due to its high performance in both exploration and ex-
ploitation phases. As it has been stated, an algorithm

with high efficiency in the exploration stage is required
because sonar data covers the entire search area, and
the SCA algorithm is much better than other meta-
heuristic algorithms in this field.
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Table 3. Experimental results for Gorman & Sejnowski dataset.

Classifier MSE (AVE± STD) p-values Classification rate [%]
RBF-SCA 0.0711± 0.0325 N/A 91.0117
RBF-GSA 0.0911± 0.1111 0.0145 90.0012
RBF-KF 0.1179± 0.0999 1.2119e–03 87.1167
RBF-GA 0.1127± 0.1184 0.0039 89.1010
RBF-GD 0.1295± 0.1112 1.1108e–20 84.8147

Table 4. Experimental results for CDS2015 dataset.

Classifier MSE (AVE± STD) p-values Classification rate [%]
RBF-SCA 0.0519± 0.0211 N/A 93.2147
RBF-GSA 0.0987± 0.0207 1.0019e–07 91.9147
RBF-KF 0.1001± 0.0997 0.0014 90.0119
RBF-GA 0.1227± 0.1004 0.0497 89.9147
RBF-GD 0.1391± 0.1113 0.0466 88.9997

Table 5. Experimental results for developed dataset.

Classifier MSE (AVE± STD) p-values Classification rate [%]
RBF-SCA 0.0919± 0.0012 N/A 91.4568
RBF-GSA 0.1311± 0.0098 7.2239e–04 87.8794
RBF-KF 0.3149± 0.0587 9.2798e–20 78.1457
RBF-GA 0.2227± 0.0458 0.0039 80.9874
RBF-GD 0.1994± 0.1202 0.0466 86.9546

4. Conclusion

In this paper, a new meta-heuristic method called
the SCA was used to train RBF NNs. To evaluate the
designed classifier, two benchmark underwater sonar
classification problems were used. Also, an experimen-
tal underwater target classification was developed to
practically evaluate the merits of the RBF-based clas-
sifier in dealing with high-dimensional real word prob-
lems. Then, results were compared with the GD, KF,
GA, and GSA standard algorithms. Simulation results
showed that the SCA algorithm provides better re-
sults in terms of convergence rate and classification
accuracy compared to the standard algorithms. Due
to the complexity of RBF NNs, we can use simpler
networks such as multilayer perceptron in future work.
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