PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental and theoretical study of the reinforced concrete flat slabs with the central support loss

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper experimentally and theoretically considers the issues of assessing the robustness and resistance to progressive collapse of a flat slab with a sudden removal of the central support. The results of testing two scale models of a fragment of a flat ceiling in the case of removal of the central support under static (specimen FS-1) and dynamic (specimen FS-2) loading are presented and analyzed. A theoretical approach to the quantitative assessment of robustness was tested, which is based on the provisions of the energy balance of a damaged structural system in an accidental design situation.
Rocznik
Tom
Strony
12--41
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
  • Department of Concrete Technology and Construction Materials, Brest State Technical University, Belarus
  • Department of Building Structures, Bialystok University of Technology, Poland
autor
  • Department of Architecture, Brest State Technical University, Belarus
  • Department of Building Structures, Brest State Technical University, Belarus
Bibliografia
  • 1. Adam, J. M., Parisi, F., Sagaseta, J., and Lu, X. (2018). Research and practice on progressive collapse and robustness of building structures in the 21st century. Engineering Structures, 173, 122-149. DOI: 10.1016/j.engstruct.2018.06.082.
  • 2. ASCE. (2005). Minimum design loads for buildings and other structures. American Society of Civil Engineers.
  • 3. British Standard BS 8110-11. (1997). The structural use of concrete in building – Part 1: Code of practice for design and construction. London, U.K.
  • 4. Chen, Z., Zhu, Y., Lu, X., and Lin, K. (2023). A simplified method for quantifying the progressive collapse fragility of multi-story RC frames in China. Engineering Failure Analysis, 143, DOI: 10.1016/j.engfailanal.2022.106924.
  • 5. Dat, P. X., and Tan, K. H. (2013). Experimental study of beam–slab substructures subjected to a penultimate-internal column loss. Engineering Structures, 55, 2-15. DOI: 10.1016/j.engstruct.2013.03.026.
  • 6. Dat, P. X., and Tan, K. H. (2015). Experimental response of beam-slab substructures subject to penultimate-external column removal. Journal of Structural Engineering, 141(7), 1-12. DOI: 10.1061/(ASCE)ST.1943-541X.0001123.
  • 7. DoD UFC Guidelines. (2005). Design of Buildings to Resist Progressive Collapse, Unified Facilities Criteria (UFC) 4-023-03. Department of Defense (DoD).
  • 8. Ellingwood, B. R., Smilowitz, R., Dusenberry, D. O., Duthinh, D., Lew, H. S., & Carino, N. J. (2007). Best practices for reducing the potential for progressive collapse in buildings. NISTIR 7396. National Institute of Science and Technology, US Deparment of Commerce.
  • 9. European Committee for Standardization. (2006). Eurocode 1 - EN 1991-1-7: Actions on structures - Part 1-7: General actions - Accidental actions.
  • 10. fib Bulletin 43: Structural connections for precast concrete buildings. Guide to good practice. 2008.
  • 11. fib Bulletin 72. Bond and anchorage of embedded reinforcement: Background to the fib Model Code for Concrete Structures 2010: Technical report. fib-Fédération internationale du béton, 2014; 72.
  • 12. fib Model Code for Concrete Structures 2010. (2010). International Federation for Structural Concrete (fib), Lausanne, Switzerland.
  • 13. General Service Administration (GSA). (2003.). Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects. Washington (DC).
  • 14. GOST 10180-2012 (2015). Concretes. Methods for strength determination using reference specimens. Minsk. (In Russian).
  • 15. GOST 12004-81 (2011). Reinforcing-bar steel. Tensile test methods. (In Russian).
  • 16. GOST 24452-80. Concretes. Methods of prismatic, compressive strength, modulus of elasticity and Poisson’s ratio determination. (In Russian).
  • 17. Herraiz B., Vogel T. and Russell J. (2015). Energy-based method for sudden column failure scenarios: theoretical, numerical and experimental analysis. In IABSE Workshop Helsinki 2015: Safety, Robustness and Condition Assessment of Structures. Report (pp. 70-77). International Association for Bridge and Structural Engineering IABSE. DOI: https://doi.org/10.3929/ethz-a-010389549.
  • 18. International Standard Organization. (2015). ISO 2394: General principles on reliability for structures, Fourth ed. Genève, Switzerland.
  • 19. Izzuddin, B. A., Vlassis, A. G., Elghazouli, A. Y., & Nethercot, D. A. (2008). Progressive collapse of multi-storey buildings due to sudden column loss—Part I: Simplified assessment framework. Engineering structures, 30(5), 1308-1318. DOI: 10.1016/j.engstruct.2007.07.011.
  • 20. Kennedy, G., & Goodchild, C. H. (2004). Practical yield line design. Concrete Centre, Surrey, UK.
  • 21. Lim, N. S., Tan, K. H., and Lee, C. K. (2017). Experimental studies of 3D RC substructures under exterior and corner column removal scenarios. Engineering Structures, 150, 409-427. DOI: 10.1016/j.engstruct.2017.07.041.
  • 22. Ma, F., Gilbert, B. P., Guan, H., Xue, H., Lu, X., and Li, Y. (2019). Experimental study on the progressive collapse behaviour of RC flat plate substructures subjected to corner column removal scenarios. Engineering Structures, 180, 728-741. DOI: 10.1016/j.engstruct.2018.11.043.
  • 23. Micallef, K., Sagaseta, J., Ruiz, M. F., and Muttoni, A. (2014). Assessing punching shear failure in reinforced concrete flat slabs subjected to localised impact loading. International Journal of Impact Engineering, 71, 17-33. DOI: 10.1016/j.ijimpeng.2014.04.003.
  • 24. Muttoni, A. (2008). Punching shear strength of reinforced concrete slabs without transverse reinforcement. ACI structural Journal, 105, 440-450. DOI: 10.14359/19858.
  • 25. Pang, B., Wang, F., Yang, J., Nyunn, S., & Azim, I. (2021). Performance of slabs in reinforced concrete structures to resist progressive collapse. In Structures (Vol. 33, pp. 4843-4856). Elsevier. DOI: 10.1016/j.istruc.2021.04.092.
  • 26. Pham, A. T., Lim, N. S., and Tan, K. H. (2017). Investigations of tensile membrane action in beam-slab systems under progressive collapse subject to different loading configurations and boundary conditions. Engineering Structures, 150, 520-536. DOI: 10.1016/j.engstruct.2017.07.060.
  • 27. Preece, B. W., and Davis, D. D. (1974). Modeling of reinforced concrete structures. Minsk: The highest school. (In Russian).
  • 28. Qian, K., and Li, B. (2012). Slab effects on response of reinforced concrete substructures after loss of corner column. ACI Structural Journal, 109(6), 845-855.
  • 29. Qian, K., Li, B., and Ma, J. X. (2015). Load-carrying mechanism to resist progressive collapse of RC buildings. J. Struct. Eng, 141(2), 1-14. DOI: 10.1061/(ASCE)ST.1943-541X.0001046.
  • 30. Qian, K., and Li, B. (2015). Research advances in design of structures to resist progressive collapse. Journal of Performance of Constructed Facilities, 29(5), B4014007. DOI: 10.1061/(ASCE)CF.1943-5509.0000698.
  • 31. Ren, P., Li, Y., Lu, X., Guan, H., and Zhou, Y. (2016). Experimental investigation of progressive collapse resistance of one-way reinforced concrete beam–slab substructures under a middle-column-removal scenario. Engineering Structures, 118, 28-40. DOI: 10.1016/j.engstruct.2016.03.051.
  • 32. Russell, J. M., Owen, J. S., and Hajirasouliha, I. (2015). Experimental investigation on the dynamic response of RC flat slabs after a sudden column loss. Engineering Structures, 99, 28-41. DOI: 10.1016/j.engstruct.2015.04.040.
  • 33. SN 2.01.01-2019. (2020). Basics of design of building structures. Minsk. (In Russian).
  • 34. SP 5.03.01-2020. (2020). Concrete and reinforced concrete structures. Minsk. (In Russian).
  • 35. Timoshenko S., Woinowsky-Krieger S. (1987). Theory of Plates and Shells, 2nd ed. New York City, United States of America: McGraw-Hill.
  • 36. Tohidi, M. (2015). Effect of floor-to-floor joint design on the robustness of precast concrete cross wall buildings (Doctoral dissertation, University of Birmingham).
  • 37. Tur, V., Tur, A., and Lizahub, A. (2021). Simplified analytical method for the robustness assessment of precast reinforced concrete structural systems. Budownictwo i Architektura, 20(4), 93-114. DOI: 10.35784/bud-arch.2774.
  • 38. Wieczorek, M. (2013). Influence of amount and arrangement of reinforcement on the mechanism of destruction of the corner part of a slab-column structure. Procedia Engineering, 57, 1260-1268. DOI: 10.1016/j.proeng.2013.04.159.
  • 39. Yi, W. J., Zhang, F. Z., and Kunnath, S. K. (2014). Progressive collapse performance of RC flat plate frame structures. Journal of Structural Engineering, 140(9), 1-10. DOI: 10.1061/(ASCE)ST.1943-541X.0000963.
  • 40. Chmielewski R., Baryłka A., Obolewicz J. The impact of design and executive errors affecting the damage to the floor of the concert hall. Journal of Achievements in Materials and Manufacturing Engineering 2021; 2 (104): (str. 49-56) doi 10.5604/01.3001.0014.8488
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-44d36e85-5bff-4e40-b22f-e7e1e85ab5e1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.