PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of rail vehicle speed with acoustic signal processed using continuous wavelet transform

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the course of research and analysis on the possibility of using time-frequency methods of acoustic signal processing to determine the speed of moving rail vehicles. An experiment was conducted in the form of a trackside pass-by test of the acoustic pressure emitted by passing trams representing the rolling stock of the Municipal Transport Company in Poznan. The recorded signal was then processed using the Continuous Wavelet Transform (CWT), resulting in a scalogram that is a variation of the time-frequency characteristics. This made it possible to identify in the signal the travel time of individual bogies and their wheelsets, as well as the most sensitive value of the scale parameter. The waveform of the scalogram fragment for the selected value of the scale parameter was processed using the RMS envelope, and then the peak values were identified. Juxtaposing the obtained results with the knowledge of the structural dimensions of the tested vehicle, it was possible to determine its moving speed. To validate the results of the experiment, photocells located on both sides of the measurement track were used, which generated voltage when the test vehicle passed between them, allowing the determination of its average moving speed. The result of the study was the formulation of a method that can be used to determine the speed of a vehicle based on the time elapsed between the identification in the signal of the components corresponding to the passage of successive sets of wheels.
Rocznik
Strony
art. no. 2023223
Opis fizyczny
Bibliogr. 20 poz., 1 fot. kolor., rys., wykr.
Twórcy
  • Poznan University of Technology, Institute of Transport, Piotrowo 3, 61-138 Poznań
  • Poznan University of Technology, Institute of Transport, Piotrowo 3, 61-138 Poznań
  • Poznan University of Technology, Institute of Transport, Piotrowo 3, 61-138 Poznań
Bibliografia
  • 1. N. Bin; Analysis of train braking accuracy and safe protection distance in automatic train protection (ATP) systems; Computers in Railways, 1996, 1, 20; DOI: 10.2495/CR960121
  • 2. J. Łukasik; Relation between pre-warning time and actual train velocity in automatic level crossing signalling systems at level crossings; Diagnostyka, 2021, 22, 39-46; DOI: 10.29354/diag/133700
  • 3. H. Nakamura; How to Deal with Revolutions in Train Control Systems; Engineering, 2016, 2(3), 380-386; DOI: 10.1016/J.ENG.2016.03.015
  • 4. M. Orczyk, F. Tomaszewski; Studies and assessment of transport noise in Poznan; Archives of Transport, 2016, 37, 43-54; DOI: 10.5604/08669546.1203202
  • 5. Y. Sato, T. Takashige, I. Watanabe; Advanced automatic train protection system; Computers in Railways, 1996, 2, 21; DOI: 10.2495/CR960121
  • 6. D. Mokrzan, G. Szymański; Time-frequency methods of non-stationary vibroacoustic diagnostic signals processing; Rail Vehicles, 2021, 44-57; DOI: 10.53502/RAIL-143047
  • 7. M. Orczyk, F. Tomaszewski; Studies and assessment of transport noise in Poznan; Archives of Transport, 2016, 37, 43-54; DOI: 10.5604/08669546.1203202
  • 8. T. Wszołek, J. Majchrowicz; Analysis of the usefulness of distinctive noise features from rail and wheel in assessing their impact on the overall railway noise level; Diagnostyka, 2019, 20, 103-109; DOI: 10.29354/diag/114807
  • 9. B. Allotta, V. Colla, M. Malvezzi; Train position and speed estimation using wheel velocity measurements; Proc Inst Mech Eng F J Rail Rapid Transit., 2002, 216, 207-225; DOI: 10.1243/095440902760213639
  • 10. M. Malvezzi, B. Allotta, M. Rinchi; Odometric estimation for automatic train protection and control systems; Vehicle System Dynamics, 2011, 49, 723-739; DOI: 10.1080/00423111003721291
  • 11. X. Wang, X. Shi, J. Wang, X. Yu, B. Han; Train Speed Estimation from Track Structure Vibration Measurements; Applied Sciences, 2020, 10, 4742; DOI: 10.2495/CR960332
  • 12. R. Aliev; Analysis of the track sections control system a rolling stock axle counting sensor; Proceedings of Transport, Ecology - sustainable development, Eco Varna 2021, Varna, Bulgaria, 13-15 May 2021
  • 13. L. Chia, B. Bhardwaj, R. Bridgelall, P. Lu, D.D. Tolliver; Train speed estimation using low-cost GPS receivers; Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring 2019
  • 14. E. Pencheva, V. Trifonov, I. Atanasov; Towards Intelligent Train Control Systems; 31st Conference of Open Innovations Association (FRUCT), Helsinki, Finland, 2022, 229-236; DOI: 10.23919/FRUCT54823.2022.9770906
  • 15. B. Boashash; Time-Frequency Signal Analysis and Processing: A Comprehensive Reference, 2nd ed.; Academic Press, 2016
  • 16. D. Mokrzan, G. Szymański; Time-frequency methods of non-stationary vibroacoustic diagnostic signals processing; Rail Vehicles, 2021, 44-57; DOI: 10.53502/RAIL-143047
  • 17. Solaris Bus & Coach Sp. z. o. o.; Tramino’s product catalogue
  • 18. K. Brzeziński; Active - Passive: On Preconceptions of Testing; Journal of Telecommunications and Information Technology, 2011(3), 63-73
  • 19. PN-K-92008:1998; Public transport. Kinematic gauge of tram cars (in Polish), 1998
  • 20. D.E. Newland; Practical Signal Analysis: Do Wavelets Make Any Difference?; Proceedings of ASME 1997 Design Engineering Technical Conferences. Volume 1A: 16th Biennial Conference on Mechanical Vibration and Noise, Sacramento, California, USA, September 14-17, 1997
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-44d1501f-eacf-499b-90bd-333fa135857a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.