Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The properties of polymer composites depend on their structures. Good initial properties are often not enough because they change under environmental conditions. Thus, studies of functional properties should provide information about their initial properties and behaviour under operating conditions. The study aimed to determine the effect of the structure of dental composites and the environmental hydrothermal conditions on their mechanical strength. Design/methodology/approach Light-cured polymer matrix ceramic composites (LC PMCCs) were investigated. Commercially available composites and experimental materials with different filler particle contents were tested. Compressive strength, three-point and biaxial flexural strength tests were carried out. The tests were performed using composites without a load history, exposed to a moist environment and hydrothermal ageing. Findings In most cases, changes in compressive strength under the effect of the moist environment and hydrothermal ageing were non-significant. Compressive and three-point flexural strength values obtained for universal-type materials were higher than those obtained for flow-type composites. In contrast, higher values of biaxial flexural strength characterised the latter. Hydrothermal ageing caused the greatest decrease (approx. 60%) in the three-point flexural strength of universal-type composites. The strength degradation of flow-type materials was about 40%. Research limitations/implications It is unknown whether the effects of fatigue due to mechanical and hydro-thermal loads are additive, i.e., whether the principle of superposition applies in the case of combined action of these loads or whether a synergy phenomenon occurs. In the next stages, experiments can be carried out involving the simultaneous operation of both types of force. Practical implications The issue of durability is well established in the field of machine operation and, to a lesser extent, in relation to medical devices. Understanding the importance of the durability of medical facilities is not common. This interdisciplinary project may contribute to the dissemination of knowledge in this field. Originality/value Based on the obtained test results, it should be concluded that the based on the change in the elastic modulus.
Wydawca
Rocznik
Tom
Strony
327--340
Opis fizyczny
Bibliogr. 69 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Safety Engineering and Civil Protection, Fire Academy, ul. Słowackiego 52/54, 01-629 Warszawa, Poland
autor
- Department of Conservative Dentistry, Medical University of Lublin, ul. W. Chodźki 6, 20-093 Lublin, Poland
autor
- Tribology Center, Łukasiewicz Research Network-Institute for Sustainable Technologies (L-ITEE), ul. Pułaskiego 6/10, 26-600 Radom, Poland
- Institute of Safety Engineering, Fire Academy, ul. Słowackiego 52/54, 01-629 Warszawa, Poland
autor
- Institute of Transport, Combustion Engines and Ecology, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618, Lublin, Poland
autor
- Department of Automation, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618, Lublin, Poland
autor
- Institute of Civil Protection, Lviv State University of Life Science, ul. Kleparivska 35, 79007, Lviv, Ukraine
Bibliografia
- [1] M. Jabłońska, W. Jurczak, D. Ozimina, M. Adamiak, Increasing the operational reliability of a ship by using a composite impeller in the event of hydrophore pump failure, Maintenance and Reliability 25/1 (2023) 18. DOI: http://doi.org/10.17531/ein.2023.1.18
- [2] A. Walczak, D. Pieniak, P. Lonkwic, W. Kupicz, S. Ptak, P. Piątek, W. Wąsik, A. Renkas, Impact of the Development of the Design of Firefighter Helmets on the Mechanical Shock Absorption Capacity, Advances in Science and Technology Research Journal 17/6 (2023) 171-184. DOI: https://doi.org/10.12913/22998624/171753
- [3] A. Komorek, P. Przybyłek, R. Szczepaniak, J. Godzimirski, M. Rośkowicz, S. Imiłowski, The influence of low-energy impact loads on the properties of the sandwich composite with a foam core, Polymers 14/8(2022) 1566. DOI: https://doi.org/10.3390/polym14081566
- [4] P.G. Ikonomov, A. Yahamed, P.D. Fleming, A. Pekarovicova, Design and testing 3D printed structures for bone replacements, Journal of Achievements in Materials and Manufacturing Engineering 101/2 (2020) 76-85. DOI: https://doi.org/10.5604/01.3001.0014.4922
- [5] M.N. Obaid, O.H. Sabr, A.A. Hussein, Characteristic of polypropylene nanocomposite material reinforcement with hydroxyapatite for bone replacement, Journal of Achievements in Materials and Manufacturing Engineering 104/1 (2021) 21-30. DOI: https://doi.org/10.5604/01.3001.0014.8483
- [6] Y. Ramkumar, M. Anoj, L. Hae-Hyoung, L. Seul-Yi, P. Soo-Jin, Tribological behavior of dental resin composites: A comprehensive review, Tribology International 190 (2023) 109017. DOI: https://doi.org/10.1016/j.triboint.2023.109017
- [7] L.S. Albergaria, C. Koch Scotti, R.F.L. Mondelli, H.A. Vega, C.M. Faggion, J.F.S. Bombonatti, M.M. de Amoêdo Campos Velo, Effect of nanofibers as reinforcement on resin-based dental materials: an in vitro systematic, Japanese Dental Science Review 59 (2023) 239-252. DOI: https://doi.org/10.1016/j.jdsr.2023.07.002
- [8] M.A.S. Melo, L. Mokeem, J. Sun, Bioactive restorative dental materials ‒ the new frontier, Dental Clinics of North America 66/4 (2022) 551-566. DOI: https://doi.org/10.1016/j.cden.2022.05.005
- [9] S. Adeeb, S. Adeeb, G. Chladek, W. Pakieła, A. Mertas, Influence of silver-containing filler on antibacterial properties of experimental resin composites against Enterococcus faecalis, Journal of Achievements in Materials and Manufacturing Engineering 109/2 (2021) 59-67. DOI: https://doi.org/10.5604/01.3001.0015.6259
- [10] B. Łapińska, M. Podlewska, J. Kleczewska, J. Nowak, A. Szczesio, J. Sokołowski, M. Łukomska-Szymańska, Experimental composite material modified with calcium fluoride – three-point bending flexural test, Journal of Achievements in Materials and Manufacturing Engineering 74/2 (2016) 72-77. DOI: https://doi.org/10.5604/17348412.1225912
- [11] M. Kazemi, A.H. Navarchian, F. Ahangaran, Effects of silica surface modification with silane and poly(ethylene glycol) on flexural strength, protein-repellent, and antibacterial properties of acrylic dental nanocomposites, Dental Materials 39/10 (2023) 863-871. DOI: https://doi.org/10.1016/j.dental.2023.07.010
- [12] A.S. Alansy, T.A. Saeed, R. Al-Attab, Y. Guo, Y. Yang, B. Liu, Z. Fan, Boron nitride nanosheets modified with zinc oxide nanoparticles as novel fillers of dental resin composite, Dental Materials 38/10 (2022) e266-e274. DOI: https://doi.org/10.1016/j.dental.2022.08.010
- [13] Y. Wang, H. Hua, W. Li, R. Wang, X. Jiang, M. Zhu, Strong antibacterial dental resin composites containing cellulose nanocrystal/zinc oxide nanohybrids, Journal of Dentistry 80 (2019) 23-29. DOI: https://doi.org/10.1016/j.jdent.2018.11.002
- [14] D. Pieniak, A. Walczak, M. Walczak, K. Przystupa, A.M. Niewczas, Hardness and wear resistance of dental biomedical nanomaterials in a humid environment with nonstationary temperatures. Materials 13/5 (2022) 1255. DOI: https://doi.org/10.3390/ma13051255
- [15] B. Pratap, R.K. Gupta, L. Denis, D. Goswami, Evaluation of polymerization shrinkage and Vickers hardness for restorative dental composites, Materials Today 21/3 (2020) 1563-1565. DOI: https://doi.org/10.1016/j.matpr.2019.11.090
- [16] S.K. Usul, A. Aslan, H.B. Lüleci, B. Ergüden, M.T. Çöpoğlu, H. Oflaz, A.M. Soydan, D. Özçimen, Investigation of antimicrobial and mechanical effects of functional nanoparticles in novel dental resin composites, Journal of Dentistry 123 (2022) 104180. DOI: https://doi.org/10.1016/j.jdent.2022.104180
- [17] D. Pieniak, A. Walczak, A.M. Niewczas, Comparative study of wear resistance of the composite with microhybrid structure and nanocomposite, Acta Mechanica et Automatica 10/4 (2016) 306-309. DOI: https://doi.org/10.1515/ama-2016-0048
- [18] G. Georgiev, T. Dikova, Hardness investigation of conventional, bulk fill and flowable dental composites, Journal of Achievements in Materials and Manufacturing Engineering 109/2 (2021) 68-77. DOI: https://doi.org/10.5604/01.3001.0015.6261
- [19] Y. Yan, C. Chen, B. Chen, J. Shen, H. Zhang, H. Xie, Effects of hydrothermal aging, thermal cycling, and water storage on the mechanical properties of a machinable resin-based composite containing nanozirconia fillers, Journal of the Mechanical Behavior of Biomedical Materials, 102 (2020) 103522. DOI: https://doi.org/10.1016/j.jmbbm.2019.103522
- [20] N. de Jager, T.J.A.G. Münker, L.F. Guilardi, V.J. Jansen, Y.G.E. Sportel, C.J. Kleverlaan, The relations between impact strength and flexural strength of dental materials, Journal of the Mechanical Behavior of Biomedical Materials 122 (2021) 104658. DOI: https://doi.org/10.1016/j.jmbbm.2021.104658
- [21] N. Ilie, T.J. Hilton, S.D. Heintze, R. Hickel, D.C. Watts, N. Silikas, J.W. Stansbury, M. Cadenaro, J.L. Ferracane, Academy of Dental Materials guidance-Resin composites: Part I-Mechanical properties, Dental Materials 33/8 (2017) 880-894. DOI: https://doi.org/10.1016/j.dental.2017.04.013
- [22] B. Pratap, R.K. Gupta, B. Bhardwaj, M. Nag, Evaluation of compressive strength and void content of resin based dental composites, Materials Today Proceedings 33/7 (2020) 2567-2569. DOI: https://doi.org/10.1016/j.matpr.2019.12.142
- [23] K. Drzewiecka, J. Kleczewska, M. Krasowski, J. Sokołowski, B. Łapińska, Mechanical properties of composite material modified with amorphous calcium phosphate, Journal of Achievements in Materials and Manufacturing Engineering 74/1 (2016) 22-28. DOI: https://doi.org/10.5604/17348412.1225754
- [24] R. Belli, A. Petschelt, U. Lohbauer, Are linear elastic material properties relevant predictors of the cyclic fatigue resistance of dental resin composites?, Dental Materials 30/4 (2014) 381-391. DOI: https://doi.org/10.1016/j.dental.2014.01.009
- [25] I.F. Ghazi, S.I. Salih, J.K. Oleiwi, M.A. Mutar, Evaluation of diametral tensile and compressive strengths of different types of nanocomposites for dental applications, Materials Today Proceedings 49/7 (2022) 2641-2647. DOI: https://doi.org/10.1016/j.matpr.2021.08.247
- [26] P. Malara, K. Paluch, K. Sobolewska, A. Pasieka, Assessment of the compressive strength of the metal-ceramic connections in fixed dental restorations, Journal of Achievements in Materials and Manufacturing Engineering 79/2 (2016) 66-73. DOI: https://doi.org/10.5604/01.3001.0010.0671
- [27] M. Nowak, I. Kalamarz, G. Chladek, Mechanical properties of Easy Fill composites after storage in mouthwashes, Journal of Achievements in Materials and Manufacturing Engineering 88/1 (2018) 25-34. DOI: https://doi.org/10.5604/01.3001.0012.5868
- [28] F.F. Demarco, K. Collares, F.H. Coelho-de-Souza, M.B. Correa, M.S. Cenci, R.R. Moraes, N.J.M. Opdam, Anterior composite restorations: a systematic review on long-term survival and reasons for failure, Dental Materials 31/10 (2015) 1214-1224. DOI: https://doi.org/10.1016/j.dental.2015.07.005
- [29] K. Collares, N.J.M. Opdam, M. Laske, E.M. Bronkhorst, F.F. Demarco, M.B. Correa, M.C.D.N.J.M. Huysmans, Longevity of anterior composite restorations in a general dental practice-based network, Journal of Dental Research 96/10 (2017) 1092-1099. DOI: https://doi.org/10.1177/0022034517717681
- [30] A. Aminoroaya, R.E. Neisiany, S.N. Khorasani, P. Panahi, O. Das, H. Madry, M. Cucchiarini, S. Ramakrishna, A review of dental composites: Challenges, chemistry aspects, filler influences, and future insights, Composites Part B : Engineering 216 (2021) 108852. DOI: https://doi.org/10.1016/j.compositesb.2021.108852
- [31] U. Lohbauer, T. von der Horst, R. Frankenberger, N. Krämer, A. Petschelt, Flexural fatigue behavior of resin composite dental restoratives, Dental Materials 19/5 (2003) 435-440. DOI: https://doi.org/10.1016/S0109-5641(02)00088-X
- [32] X. Xu, L. He, B. Zhu, J. Li, J. Li, Advances in polymeric materials for dental applications, Polymer Chemistry 8 (2017) 807-823. DOI: https://doi.org/10.1039/c6py01957a
- [33] X. Zhou, X, Huang, M. Li, X. Peng, S. Wang, X. Zhou, L. Cheng, Development and status of resin composite as dental restorative materials, Journal of Applied Polymer Science 136/44 (2019) 48180. DOI: https://doi.org/10.1002/APP.48180
- [34] B. Demchyna, T. Osadchuk, Flexural strength of glass using Weibull statistic analysis, Journal of Achievements in Materials and Manufacturing Engineering 87/2 (2018) 49-61. DOI: https://doi.org/10.5604/01.3001.0012.2827
- [35] K. Żelezińska, M. Nowak, J. Żmudzki, C. Krawczyk, G. Chladek, The influence of storage conditions on the physicochemical properties and dimensional accuracy of the alginate impressions, Journal of Achievements in Materials and Manufacturing Engineering 87/2 (2018) 68-76. DOI: https://doi.org/10.5604/01.3001.0012.2829
- [36] K. Cho, G. Rajan, P. Farrar, L. Prentice, B.G. Prusty, Dental resin composites: A review on materials to product realizations, Composites Part B: Engineering 230 (2022) 109495. DOI: https://doi.org/10.1016/j.compositesb.2021.109495
- [37] F. Elfakhri, R. Alkahtani, C. Li, J. Khaliq, Influence of filler characteristics on the performance of dental composites: A comprehensive review, Ceramics International 48/19/A (2022) 27280-27294. DOI: https://doi.org/10.1016/j.ceramint.2022.06.314
- [38] M.S. Baig, A.H. Dowling, X. Cao, G.J.P. Fleming, A discriminatory mechanical testing performance indicator protocol for hand-mixed glass-ionomer restoratives, Dental Materials 31/3 (2015) 273-283. DOI: https://doi.org/10.1016/j.dental.2014.12.012
- [39] B.J. Choi, S. Yoon, Y.W. Im, J.H. Lee, H.J. Jung, H.H. Lee, Uniaxial/biaxial flexure strengths and elastic properties of resin-composite block materials for CAD/CAM, Dental Materials 35/2 (2019) 389-401. DOI: https://doi.org 10.1016/j.dental.2018.11.032
- [40] A.K. Muhammad, A.H. Delgado, A.M. Young, Modifying dental composites to formulate novel methacrylate-based bone cements with improved polymerisation kinetics, and mechanical properties, Dental Materials 39/12 (2023) 1067-1075. DOI: https://doi.org/10.1016/j.dental.2023.10.010
- [41] R. Yadav, A. Meena, Effect of aluminium oxide, titanium oxide, hydroxyapatite filled dental restorative composite materials on physico-mechanical properties, Ceramics International 48/14 (2022) 20306-20314. DOI: https://doi.org/10.1016/j.ceramint.2022.03.311
- [42] B. Pick, J.B.C. Meira, L. Driemeier, R.R. Braga, A critical view on biaxial and short-beam uniaxial flexural strength tests applied to resin composites using Weibull, fractographic and finite element analyses, Dental Materials 26/1 (2010) 83-90. DOI: https://doi.org/10.1016/j.dental.2009.09.002
- [43] J. Jin, H. Takahashi, N. Iwasaki, Effect of test method on flexural strength of recent dental ceramics, Dental Materials Journal 23/4 (2004) 490-496. DOI: https://doi.org/10.4012/dmj.23.490
- [44] S.M. Chung, A.U.J. Yap, S.P. Chandra, C.T. Lim, Flexural strength of dental composite restoratives: comparison of biaxial and three-point bending test, Journal of Biomedical Materials Research Part B: Applied Biomaterials 71B/2 (2004) 278-283. DOI: https://doi.org/10.1002/jbm.b.30103
- [45] Y. Ishida, D. Miura, A. Shinya, Application of fused deposition modeling technology for fabrication jigs of three-point bending test for dental composite resins, Journal of the Mechanical Behavior of Biomedical Material 130 (2022) 105172. DOI: https://doi.org/10.1016/j.jmbbm.2022.105172
- [46] A. Walczak, A. Niewczas, D. Pieniak, L. Gil, E. Kozłowski, P. Kordos, Temporary stability of compressive strength of flow and universal type LC PMCCs materials, Advances in Materials Science 18/3 (2018) 22-33. DOI: https://doi.org/10.1515/adms-2017-0038
- [47] S.R. Kumar, I.K. Bhat, A. Patnaik, Novel dental composite material reinforced with silane functionalized microsized gypsum filler particles, Polymer Composites 38/2 (2017) 404-415. DOI: https://doi.org/10.1002/pc.23599
- [48] A. Meena, H.S. Mali, A. Patnaik, S.R. Kumar, Effect of adding nanoalumina and marble dust powder on the physical, mechanical, and thermo-mechanical characterization of dental composite, Polymer Composites 39/S1 (2018) E321-E331. DOI: https://doi.org/10.1002/pc.24131
- [49] U.V. Hambire, V.K. Tripathi, Optimization of compressive strength of zirconia based dental composites, Bulletin of Materials Science 37 (2014) 1315-1320. DOI: https://doi.org/10.1007/s12034-014-0077-3
- [50] K.H. Kim, J.L. Ong, O. Okuno, The effect of filler loading and morphology on the mechanical properties of contemporary composites, The Journal of Prosthetic Dentistry 87/6 (2002) 642-649. DOI: https://doi.org/10.1067/mpr.2002.125179
- [51] A.U.J. Yap, S.H. Teoh, Comparison of flexural properties of composite restoratives using the ISO and mini-flexural tests, Journal of Oral Rehabilitation 30/2 (2003) 171-177. DOI: https://doi.org/10.1046/j.1365-2842.2003.01004.x
- [52] N. Kumar, M.S. Zafar, W.M. Dahri, M.A. Khan, Z. Khurshid, S. Najeeb, Effects of deformation rate variation on biaxial flexural properties of dental resin composites, Journal of Taibah University Medical Sciences 13/4 (2018) 319-326. DOI: https://doi.org/10.1016/j.jtumed.2018.04.012
- [53] S.R. Kumar, A. Patnaik, I.K. Bhat, Physical and thermo-mechanical characterizations of resin-based dental composite reinforced with silane-modified nanoalumina filler particle. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 230/2 (2016) 504-514. DOI: https://doi.org/10.1177/1464420715581004
- [54] M.P. Walker, R. Haj-Ali, Y. Wang, D. Hunziker, K.B. Williams, Influence of environmental conditions on dental composite flexural properties, Dental Materials 22/11 (2006) 1002-1007. DOI: https://doi.org/10.1016/j.dental.2005.11.023
- [55] N. Ilie, R. Hickel, Investigations on mechanical behaviour of dental composites, Clinical Oral Investigations 13 (2009) 427-438. DOI: https://doi.org/10.1007/s00784-009-0258-4
- [56] A.S.Q. Fonseca, A.D.L. Moreira, P.P.A. de Albuquerque, L.R. de Menezes, C.S. Pfeifer, L.F.J. Schneider, Effect of monomer type on the CC degree of conversion, water sorption and solubility, and color stability of model dental composites, Dental Materials 33/4 (2017) 394-401. DOI: https://doi.org/10.1016/j.dental.2017.01.010
- [57] V.E. Gajewski, C.S. Pfeifer, N.R. Fróes-Salgado, L.C. Boaro, R.R. Braga, Monomers used in resin composites: degree of conversion, mechanical properties and water sorption/solubility, Brazilian Dental Journal 23/5 (2012) 508-514. DOI: https://doi.org/10.1590/s0103-64402012000500007
- [58] A. Aminoroaya, R. Bagheri, S.N. Khorasani, Z. Talebi, P. Derakhshanfar, R.E. Neisiany, Mesoporous silica aerogel reinforced dental composite: Effects of microstructure and surface modification, Journal of the Mechanical Behavior of Biomedical Materials 125 (2022) 104947. DOI: https://doi.org/10.1016/j.jmbbm.2021.104947
- [59] R.O. Souza, M. Özcan, S.M. Michida, R.M. De Melo, C.A. Pavanelli, M.A. Bottino, L.E.S. Soares, A.A. Martin, Conversion degree of indirect resin composites and effect of thermocycling on their physical properties, Journal of Prosthodontics: Implant, Esthetic and Reconstructive Dentistry 19/3 (2010) 218-225. DOI: https://doi.org/10.1111/j.1532-849X.2009.00551.x
- [60] A.R. Curtis, W.M. Palina, G.J.P. Fleming, A.C.C. Shortall, P.M. Marquis, The mechanical properties of nanofilled resin-based composites: the impact of dry and wet cyclic pre-loading on bi-axial flexure strength, Dental Materials 25/2 (2009) 188-197. DOI: https://doi.org/10.1016/j.dental.2008.06.003
- [61] S. Tuncer, M. Demirci, M. Tiryaki, N. Ünlü, Ö. Uysal, The effect of a modeling resin and thermocycling on the surface hardness, roughness, and color of different resin composites. Journal of Esthetic and Restorative Dentistry 25/6 (2013) 404-419. DOI: https://doi.org/10.1111/jerd.12063
- [62] D. Pieniak, A. M. Niewczas, A. Walczak, M. Łępicka, M. Grądzka-Dahlke, R. Maciejewski, P. Kordos, The effect of thermal stresses on the functional properties of various dental composites, Tribology International 152 (2020) 106509. DOI: https://doi.org/10.1016/j.triboint.2020.106509
- [63] R. Janda, J.F. Roulet, M. Latta, S. Rüttermann, Water sorption and solubility of contemporary resin‐based filling materials. Journal of Biomedical Materials Research Part B: Applied Biomaterials 82B/2 (2007) 545-551. DOI: https://doi.org/10.1002/jbm.b.30760
- [64] B. Yu, D. Liu, F. Liu, J. He, Preparation and Characterization of Light‐Cured Dental Resin without Methacrylate Monomers Derived from Bisphenol A, Advances in Polymer Technology 33/3 (2014) 21417. DOI: https://doi.org/10.1002/adv.21417
- [65] A.L. Morresi, M. D’Amario, A. Monaco, C. Rengo, F.R. Grassi, M. Capogreco, Effects of critical thermal cycling on the flexural strength of resin composites, Journal of Oral Science 57/2 (2015) 137-143. DOI: https://doi.org/10.2334/josnusd.57.137
- [66] M. Firlej, D. Pieniak, A.M. Niewczas, A. Walczak, I. Domagała, A. Borucka, K. Przystupa, J. Igielska-Kalwat, W. Jarosz, B. Biedziak, Effect of artificial aging on mechanical and tribological properties of CAD/CAM composite materials used in dentistry, Materials 14/16 (2021) 4678. DOI: https://doi.org/10.3390/ma14164678
- [67] F. Kawano, T. Ohguri, T. Ichikawa, N. Matsumoto, Influence of thermal cycles in water on flexural strength of laboratory‐processed composite resin, Journal of Oral Rehabilitation 28/8 (2001) 703-707. DOI: https://doi.org/10.1046/j.1365-2842.2001.00724.x
- [68] M. Ülker, M. Özcan, A. Şengün, F. Özer, S. Belli, Effect of artificial aging regimens on the performance of self‐etching adhesives. Journal of Biomedical Materials Research Part B: Applied Biomaterials 93B/1 (2010) 175-184. DOI: https://doi.org/10.1002/jbm.b.31572
- [69] A. Alnazzawi, D.C. Watts, Simultaneous determination of polymerization shrinkage, exotherm and thermal expansion coefficient for dental resin-composites, Dental Materials 28/12 (2012) 1240-1249. DOI: https://doi.org/10.1016/j.dental.2012.09.004
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-44d09fb4-409f-4655-b718-29397535ec48
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.