
POLISH MARITIME RESEARCH, No 1/2019 145

POLISH MARITIME RESEARCH 1 (101) 2019 Vol. 26; pp. 145-152
10.2478/pomr-2019-0016

CONSENSUS FOR MULTIPLE UNMANNED SURFACE VEHICLE 
(MUSV) SYSTEMS WITH MARKOV SWITCHING TOPOLOGIES

Liyuan Wang1, 2

Wei Yue3

Rubo Zhang1, 2

1 Key Laboratory of Intelligent Perception and Advanced Control State Ethnic Affairs Commission, Dalian, China
2 College of Mechanical and Electronic Engineering, Dalian Minzu University, Dalian, China
3 Marine Electrical Engineering College, Dalian Maritime University, Dalian, China

ABSTRACT

This paper is concerned with sampled-data leader following consensus of multiple unmanned surface vehicle (MUSV) 
systems with random switching network topologies and wave-induced disturbance. By modelling the switching of network 
topologies with the use of a Markov process and considering the effect of wave-induced disturbance, a new sampled-
data consensus control protocol is proposed. By employing an appropriate Lyapunov-Krosovskii function method and 
the weak infinitesimal operation, a novel stability criterion is derived, which ensures that the MUSV system can reach 
robustly leader-following consensus with H∞ performance satisfied. Based on this criterion, the Markov dependent 
switching consensus controller gains are obtained by solving a set of linear matrix inequalities. Finally, an illustrative 
example is given to verify the effectiveness of the proposed control scheme for MUSV systems.

Keywords: Consensus, unmanned surface vehicle (USV), Markov process, wave-induced disturbance

INTRODUCTION

During the past few years, formation control of multi-agent 
systems attracted great attention in system and control areas. 
This is partially due to the fact that there is an increasing need 
for utilizing multiple agents to perform difficult tasks, where it 
contributes to increasing efficiency, reducing system cost and 
providing redundancy against individual failure. To achieve 
the desired formation, several methods have been proposed 
but the leader-follower strategy seems to be much preferred 
in practice due to its simplicity and scalability [1]. 

As a special case of leader-following formation control, 
leader-following consensus control can enable vehicle’s states 
or outputs to approach consistency. In the past few years, 
leader-following consensus control has attracted intensive 
attention for various forms of multi-agent systems [2–4]. 
However, the controlled plants are limited to general linear 
systems, unmanned aerial vehicles and robots. Few results are 
available in the literature discussing the consensus of MUSV 
systems. In particular, the vehicles in the marine environment 

are exposed to waved-induced disturbance, this way the 
problem becomes even more difficult. Hence, it is important 
to establish a dynamic USV model and the leader-following 
consensus control method for MUSV systems by taking the 
wave-induced disturbance into consideration. This gives rise 
to the first motivation of the current work.

With the rapid development of communication technologies, 
network-based multi-agent systems have been attractive, in which 
agents communicate with each other through a communication 
network [5]. However, due to the communication constraints, 
such as link failures, packet dropouts, external disturbances, 
channel fading, task execution alteration, etc, the connectivity of 
network topology might be randomly switching among multiple 
topologies in a deterministic manner. Thus, recent attention has 
been paid to consensus control of networked multi-agent systems 
in a stochastic framework, where the switching of the network 
topologies is described by a Bernoulli or Markov process. To 
mention a few, the consensus problem for a class of second-
order multi-agent systems with Markovian characterizations is 
considered in [6], where the stochastic switching topology and the 
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random communication delay are dominated by two mutually 
independent Markov chains. A more general case with high-
order nonlinear multi-agent systems is investigated in [7] and [8]. 
Different from [6–8], the consensus problem for heterogeneous 
linear time-invariant (LTI) networked multi-agent systems 
with switching topology and time-varying delays is discussed 
in [9], where a novel two-stage distributed consensus protocol 
is proposed. To reduce unnecessary communication, an event-
triggered leader-following consensus problem for a multi-agent 
system with semi-Markov switching topologies is investigated 
in [10]. However, all the above consensus control methods do 
not conform to the actual engineering situation in the marine 
environment with randomly switching topologies and the robust 
consensus problem of MUSV systems has not been solved so 
far. This is the second motivation of the current work.

In light of the aforementioned statements, this paper aims to 
investigate sampled-data leader-following consensus of MUSV 
systems with randomly switching network topologies and wave-
induced disturbance. Each USV is assumed to have access to 
its own states (including sway velocity, yaw velocity, heading 
angle, roll velocity and roll angle) and those of its neighbours at 
each sampling time. All sampled-data are transmitted through 
a  communication network whose topology is steered by 
a Markov process. For such systems, we first present a sampled-
data leader-following consensus protocol with “sampled” 
network topologies at each sampling time. Then, by using 
an appropriate Lyapunov-Krosovskii approach and the weak 
infinitesimal operation, sufficient condition is derived, which 
guarantees that the MUSV systems can reach robustly stochastic 
leader-following consensus with H∞ performance satisfied. 
Moreover, the “topology-dependent” sampled-data consensus 
controller gains are obtained based on the condition. Finally, 
a numerical example is given to illustrate the effectiveness of 
the results derived in this paper.

Notation: The superscript T represents matrix transposition. 
 is the set of natural numbers.  denotes the n–dimensional 

Euclidean space. In    is an identity matrix. diag{ai} is 
a diagonal matrix with diagonal entries ai. P>0 means that 
matrix P is symmetric positive definite. The symbol ✳ denotes 
the symmetric terms in a symmetric matrix.

PROBLEM FORMULATION

In this section, we first introduce some basic notions of 
graph theory. Then the dynamics of USV is presented. Finally, 
we state a  leader-following consensus problem of MUSV 
systems with Markov switching topologies.

GRAPH THEORY

Let G = {Δ, S, W} denote a directed weighted graph of 
N – order, where Δ = {v1, v2, …, vN} and S   Δ×Δ are the set 
of nodes and edges, respectively, W = [wij ]     represents 
the weighted adjacency matrix with wii= 0 for any i. An edge 
defined as sij =(vi, vj ) implies that node vi can receive information 

from node vj. Node vj is considered as a neighbour of node 
vi if sij   S. The degree matrix of sub-graph G is denoted by  

=  diag{w1, w2, …, wN}, where the diagonal element is 
represented as wi = ∑N

j=1 wij (which is also called the in-degree 
of node). Correspondingly, the Laplace matrix of the directed 
graph G is defined as L =   – W. A path is a sequence of 
connected edges in a graph. If there exists a path between node 
vi and node vj , node vi in the graph is said to be reachable from 
another node vj . The union graph of a collection of directed 
graph Gr(r=1, 2, …, s), which is denoted by Us

r=1 Gr , is a directed 
graph with node set Δ and the edge set equal to the union of 
the edge sets of all of the graphs Gr in the collection. 

USV DYNAMICS

The motion of a ship with six degrees of freedom includes 
sway, yaw, roll, surge, heave, and pitch [11, 12]. The main 
concern of this paper is the motion in sway, yaw, and roll. The 
influence of surge, heave, and pitch is treated as disturbance. 
Applying Newton’s laws in a space-fixed coordinate system, 
one can have the equations for sway, yaw and roll as follows :

,        (1)

where xa, ya, and za denote the longitudinal xis, transverse axis, 
and normal axis, respectively; mya and Fya denote the effective 
mass and the force of the ship in the ya– direction, respectively; 
Izza and Ixxa denote moments of inertia with respect to the za 
and xa axes, respectively; ha and fa denote the heading angle 
and the roll angle, respectively; Na and Ka denote moments 
with respect to the za and xa axes, respectively.

By translating the equation system (1) to the motion 
coordinate system utilizing Taylor series expansions, Laplace 
transformation, and a model simplification, one can obtain 
the following state-space model [13]

(t) = Ax(t) + Bu(t) + Cw(t) ,      (2)

where x(t)=[v(t) r(t) ψ(t) p(t) ϕ(t)]T     with v(t), r(t), ψ(t), 
p(t) and ϕ(t) denoting the sway velocity caused by the rudder 
motion alone, yaw velocity, heading angle, roll velocity, and 
roll angle, respectively; u(t) represents the rudder angle; 
w(t) = [wψ(t) wϕ(t)]T denotes the wave-induced disturbance, 
and w(t)   L2[t0, ∞) with t0 denoting the initial instant; x0   

 

denotes the initial condition; A, B, and C are given by :
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where Tv and Tr denote time constants of transfer functions; 
ζ and wn denote the damping ratio and the natural frequency 
under no damping, respectively; Kvr , Kvp , Kdv , Kdr , and Kdp 
denote given gains. 

LEADER-FOLLOWING CONSENSUS PROTOCOL

Consider a collection of USVs consisting of N following 
USVs and one leader USV, where each USV is considered 
as a node in graph G. According to (2), the follower USV’s 
dynamics is described by:

(t) = Axi(t) + Bui(t) + Cw(t), i = 1, 2, …, N  (3)

Without loss of generality, the leading vehicle is labelled 
i = 0 and its dynamics is expressed by :

0(t) = Ax0(t)           (4)

It is assumed that the leader does not receive any information 
from the followers, i.e. it has no neighbours. A diagonal 
matrix M = diag{m1, m2, …, mN}    N×N is referred to be the 
leader adjacency matrix with mi≥ 0 for any i. If the leader 
is a neighbour of node vi , mi > 0, otherwise, mi = 0. In this 
paper, we assume that node 0 is globally reachable in the union 
graph Uq

r=1Gr. Then the Laplace matrix of the graph G can be 
represented as H = L+M    N×N.

As mentioned above, the communication channel is 
subject to packet dropout, channel fading and external 
disturbances, which may yield intermittent failures in wireless 
communication between USVs. At a deeper level, this challenge 
translates into the change of network topology of MUSV 
systems. Due to the randomness of communication failure, 
it is assumed that the topology of MUSV systems is steered by 
a continuous-time Markov process, i.e., G(θ(t))   {G1, G2 …, Gq} 
where θ(t) is a continuous-time Markov process with values 
in a finite set Θ = {1, 2, …, q} . The transition probabilities are 
defined as follows :

where Δt > 0, o(Δt) → 0 as Δt → 0 and πrs is the transition 
rate from mode r to mode s, which satisfies πss=–∑q

s=1, s≠r πrs 
for r   Θ. Then it is easily known that H(θ(t))   {H1, H2 …, Hq}.

In this paper, we present the following sampled-data leader-
following consensus controller for each USV system :

,   (5)

where: Kθ(kh) is a consensus controller gain matrix to be 
designed later, kh ≤ t < (k + 1)h, k    ,h is the sampling period.

Defining the error variables ei(t)  =  xi  (t)  –  x0  (t) for 
i = 1, 2, …, N and substituting (5) into (3), one can obtain:

 (6)

Let’s define an “artificial delay” as d(t) = t–kh, t  [kh, kh + h). 
Apparently, it is clear that d(t) is piecewise-linear and 
0 ≤ d(t) < h. Then, defining e(t) = [e1(t), e2(t), …, eN(t)]T and 
along with (6), the closed-loop error system can be written 
as follows:

k         (7)

where the matrix Hr=H(θ(kh)) and Kr=K(θ(kh)) for each fixed 
θ(kh)=r.

Next, we introduce the following definition for the consensus 
problem investigated in this paper.

Definition 1: The closed-loop error system (7) with Markov 
protocol θ(t) is said to be robustly stochastic leader-following 
consensus if the closed-loop error system (7) with w(k) = 0 is 
robustly stochastically stable, i.e. for all finite initial condition 
ϕ(t0)and any given initial θ(t0), there exists a finite number 
μ(t0, ϕ(t0), θ(t0)) > 0 such that:

                   ,

holds, where E is the statistical expectation operator.
Our objective here is to design Kr such that the MUSV system 

can reach robustly stochastically leader-following consensus 
with the H∞ performance constraint satisfied. In other words, 
we aim to design a controller such that the closed-loop error 
system (7) satisfies the following requirements:
Q1.  The closed-loop error system (7) with w(k) = 0 is robustly 

stochastically stable.
Q2.  The effect of w(t) on e(t) is attenuated at a desired level in 

the H∞ sense. In particular, it is required that:

||e(t)||2 < γ||w(t)||2,

for all non-zero w(t)   L2[t0, ∞) at zero initial condition, 
where γ > 0.

CONSENSUS ANALYSIS  
AND CONTROLLER DESIGN

In this section, we will derive a sufficient condition on the 
stability of system (7). Then based on the stability criterion 
in Theorem 1, we are in position to give a sufficient condition 
on the existence of sampled-data consensus controller gains 
for MUSV systems.

Lemma 1 [14]. For any constant matrix R > 0, scalar τ > 0 
and vector function : [–h, 0] such that the following integration 
is well defined, then:
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Theorem 1. For given positive scalars h and γ, the closed-
loop error system (7) is robustly stochastically stable with an 
H∞ norm bound γ, if there exist symmetric positive definite 
matrices Pr , Q, R, W of appropriate dimensions, such that (8) 
holds for every feasible value r   Θ 

 ,         (8)

where 

Proof: Choose a Lyapunov-Krasovskii functional as:

V(t, e, θ) = V1 (t, e, θ) + V2 (t, e, θ),    (9)

where:

Then the weak infinitesimal operator of the stochastic 
process θ(t) acting on V(t, e, θ) at the point θ(t) = r, is given by:

  (10)

Combining (10) and the system (7) together, one has :

L[V (t, e, θ)] + γ-1 eT(t) e(t)–γwT (t)<
ξT(t) (Пr

11–Пr
12П-1

22Пr
12) ξ(t)

where:
ξ(t) = [eT (t) eT (t–d(t)) eT (t–h) wT (t)].

By using Schur’s complement, one can see that if (8) is 
satisfied, Пr

11–Пr
12 П-1

22(Пr
12)T < 0 is also satisfied. Then for  

t   [kh, kh + h), if (8) is satisfied, one has:

L[V (t, e, θ)] + γ-1 eT(t) e(t)–γwT (t)w(t)< 0,  (11)

If w(k) = 0, then from (11), we can have that:

L[V (t, e, θ)] < –β1||ξ (t)||2 < 0,     (12)

where β1= min(λmin(–Пr
11+Пr

12П-1
22(Пr

12)T))>0,  
λmin (–Пr

11+Пr
12П-1

22(Пr
12)T)) is the minimum eigenvalue of  

–Пr
11+Пr

12П-1
22(Пr

12)T. By Dynkin’s formula, we have:

On the other hand, we can show that: 

E{V (t, e, r)} > β2 E{||e(t)||2},

where β2= min(λmin(Pr))>0, λmin(Pr)) is the minimum eigenvalue 
of Pr. The above two inequalities imply that:

where: к1= β1 β-1
2>0, к1=β-1

2>0. 
Then, by Gronwall-Bellman lemma [15], we can obtain:

E{||e(t)||2}<к2e–к1t V(t0, e (t0), θ(t0)),

which after integration equals to:

. (13)

By taking limit of (13) as t→∞, the following is yielded:

Note that V(t0, e (t0), θ(t0))>0, then by Definition 1, we know 
that system (7) is robustly stochastically stable.

If w(k)≠0, from (11) and (12), one has ||e(t)||2<γ||w(t)||2. Then, 
if (8) is satisfied, the system (7) is robustly stochastically stable 
with an H∞ norm bound γ. This completes the proof.
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Remark 1. Theorem 1 gives sufficient conditions on the 
stability of MUSV systems with Markov switching topologies 
and wave-induce disturbance. The condition of the criterion is 
formulated in the form of linear matrix inequalities (LMI). Due 
to the introduction of interior-point methods, the criterion in 
Theorem 1 can be solved numerically and efficiently. However, 
instead, if the condition of the criterion is formulated in the 
other form, such as an algebraic Riccati-type equation, it is very 
difficult to find solutions except for a few very special cases.

Remark 2: It is the first time when wave-induced disturbance 
and Markov switching topologies are considered and addressed 
in the same framework of MUSV systems. The problem 
investigated here is not only more challenging and complex 
but is also essentially different in the several aspects from 
existing ones such as [7].

1)  Different problems: Reference [7] discussed consensus 
problem of a general nonlinear multi-agent systems with 
Markov switching topologies and communication delay. 
However, in this paper, we investigate the consensus 
problem in MUSV systems with Markov switching 
topologies and wave-induced disturbance.

2)  Different objects: Reference [7] discussed the stability of 
multi-agent system solely, while in this paper, we aim to 
investigate the stability and robustness of MUSV systems 
together.

3)  Different mathematic techniques: In the Lyapunov-
Krasovskii functional candidate, reference [7] only 
considered the general item V1(t, e, θ), while in this paper, 
the discontinuous Lyapunov-functional V2(t, e, θ) is also 
considered, which may lead to a better result and lower 
computation complexity than the one using only the 
general item [16, 17].

Based on Theorem 1, we can now design the consensus 
controller (5). Pre and post-multiplying (8) with diag{Pr

-1, 
Pr

-1, Pr
-1, I, R-1, W-1} and its transposes, and define Pr= IN Ψr,  

Xr=Ψr
-1, Pr

-1QPr
-1= r , Pr

-1RPr
-1=Rr , Pr

-1WPr
-1= r and Yr=KrXr, 

we are now in position to present the following protocol design 
criterion.

Theorem 2. For given positive scalar γ, the leader-following 
consensus for MUSV systems (3) and (4) can be robustly 
stochastically achieved in H∞ sense, if there exist real matrices, 

r>0, Yr , r>0 and r>0 with appropriate dimensions such that :

,      (14)

where:

Moreover, the consensus controller gains are given by: 
Kr=YrXr

–1.
Remark 3. The conditions in Theorem 2 include the 

parameters of network topology, the Markov transmission 
probabilities and the consensus controller gain. Thus, it is very 
convenient to employ Theorem 2 for the design of controller 
gain. Moreover, to handle the nonlinear terms Pr

–1
r
–1 Pr

–1,  
Pr

–1
r
–1 Pr

–1 in (14), one can use the inequalities  
–Pr

–1
r
–1 Pr

–1≤–2(IN   X)+  and –Pr
–1

r
–1 Pr

–1≤–2(IN   X)+ . 
Then the nonlinear matrix inequalities can be transformed 
into strict LMIs. Therefore, for given network topology Gr 
and transition probabilities πrs , one can obtain the consensus 
controller gain Kr based on the above formulated operation.

SIMULATION

For the system matrices A, B, and C in (2), choose the 
parameters as follows (see also [18]):

U = 7.8(m/s), Tv =8/U, Tr=8/U, 

Kdv= 0.01U, Kdr=–0.6027U, Kdp=–0.0014U 2,

Kvr=–0.46(m/s), Kvp=–0.21U, wn=0.63(rad/s)

ξ = 0.86+0.0038U.

The external wave-induced disturbance is given by :

All the possible information transmission relationships 
among USVs are given as a group of directed graphs which are 
shown in Fig. 1. Apparently, the following vehicles can achieve 
the information from the leading vehicle in Graph G1 but lose 
connection with the leading vehicle in Graph G2. Then we know 
that the leader node is globally reachable in the union graph of 
G1 and G2. The corresponding Laplace matrix can be written as:
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Without loss of generality, it is assumed that all the weights 
are equal to 1. The network topologies of the MUSV systems 
are switched by a Markov chain with the transition matrix

By solving LMIs in Theorem 2 with h = 0.3 and r = 2, the 
controller gains are obtained as follows:

K1 = [–0.0576 0.1589 0.1867 –0.0001 0],

K2 = [–0.0638 0.1783 0.2058 0.0003 0.0001].

By using Matlab software, the Markov states of the switching 
network topologies are obtained as shown in Fig. 2, where 0 and 
1 in the y-axis denote the topology taking values in G1 and G2, 
respectively. The responses of MUSV error systems are depicted 
in Figs. 3, 4, 5, 6 and 7. Due to the derivative relations between 
the yaw velocity error ri(t)–r0(t) and the heading angle error 
ψi(t)–ψ0(t), the changes of the two errors go in the opposite 
directions; so as the roll velocity error pi(t)–p0(t) and the roll 
angle error ϕi(t)–ϕ0(t). From Figs. 3, 4, 5, 6 and 7, we can clearly 
see that all the above mentioned errors of MUSV asymptotically 
converges to zero within 6 seconds, though the followers often Fig. 1. All the possible directed graphs

Fig. 2. Markov states of the switching network topologies Fig. 4. The responses of the error ri(t) – r0(t)

Fig. 3. The responses of the error vi(t) – v0(t) Fig. 5. The responses of the error ψi(t) – ψ0(t)

(1) Graph G1

(2) Graph G2
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lost connection with the leader vehicle and were affected by the 
wave-induce disturbance. Therefore we can conclude that the 
following USV’s states indeed reach consensus with the leader 
USV’s state, which illustrates the effectiveness of the proposed 
design method.

CONCLUSION AND FUTURE WORK

This paper studied sampled-data leader-following consensus 
of MUSV systems with Markov network switching topologies 
and wave-induced disturbance. A new sampled-data consensus 
protocol which can guarantee that the USV formation system 
achieve consensus robustly, has been proposed. It is The first 
time the leader-following consensus problem in MUSV systems 
has been discussed confirming the results of stability and 
robustness of multi-agent systems to the actual engineering 
situation in the marine environment with randomly switching 
topologies and wave-induced disturbance. A  numerical 
example is given to verify the methods and the simulation 
results show that the control method can make the following 
vehicles keep consensus with their leading vehicle. Future 
research includes the modelling of MUSV system subject to 
wind-induced disturbance and the designing of consensus 
protocol constraint by the actuator saturation such as the 
maximum angle of steering gear.
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