PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wpływ temperatury na proces spalania paliw typu RDF w warstwie fluidalnej

Identyfikatory
Warianty tytułu
EN
Influence of temperature on combustion of RDF fuels in fluidized bed
Języki publikacji
PL
Abstrakty
PL
Obecnie ze względu na narastające potrzeby energetyczne świata oraz świadomość zagrożeń związanych z emisją gazów cieplarnianych, wykorzystanie energii z odpadów staje się coraz bardziej pożądane. Fluidalna technologia spalania to czysta i wydajna technologia ze względu na doskonałe właściwości mieszania i wymiany ciepła. Pozwala ona na wykorzystanie paliw nie tylko takich jak węgiel, czy biomasa, ale również komunalne odpady stałe. Coraz powszechniejszą tendencją jest częściowe lub całkowite zastąpienie paliw kopalnych przez paliwa alternatywne m.in. biomasę i RDF/SRF. Wartość opałowa tych paliw jest wysoka, zbliżona do węgla brunatnego. Największym wyzwaniem w stosowaniu paliw alternatywnych jest ogromne zróżnicowanie właściwości chemicznych i fizycznych tych paliw. W pracy przedstawiono analizę procesu spalania wytworzonych z odpadów komunalnych peletów RDF w zmiennej temperaturze prowadzonego procesu spalania. Badania przeprowadzono na reaktorze laboratoryjnym z cyrkulacyjnym złożem fluidalnym. Badania Zostały przeprowadzone w trzech różnych temperaturach komory spalania: 850°C, 750°C i 650°C i w strumieniu materiału inertnego Gs=2,5kg/m2s i Gs=5kg/m2s modelującym warunki w rzeczywistym palenisku. Z badań wynika, że technologia fluidalna może być uważana za jedną z bardziej efektywnych metod unieszkodliwiania odpadów komunalnych przy jednoczesnym wykorzystaniu ich potencjału energetycznego. Mogą one być z powodzeniem wykorzystywane zarówno w procesie spalania oraz zgazowania, czy pirolizy.
EN
Nowadays, due to the growing energy needs of the world and awareness of the threats associated with greenhouse gas emissions, the use of energy from waste is becoming more and more desirable. Fluidized bed combustion technology is a clean and efficient technology in view of its excellent mixing and heat transfer characteristics. It allows the use of fuels not only such as coal or biomass, but also municipal solid waste. The current trend is to partially or fully replace fossil fuels by alternative fuels such as biomass and Refuse Derived Fuel (RDF )/ Solid Recovered Fuels (SRF). The calorific value of these fuels is high, while also competitive in comparison with lignite. The biggest challenge in the use of alternative is that these fuels have different physical and chemical properties. The paper presents an analysis of the combustion process of RDF pellets produced from municipal waste at a variable temperature of the combustion process. Tests were carried out in a laboratory reactor with a circulating fluidized bed. The research was carried out at three different temperatures of the combustion chamber: 850°C, 750°C and 650°C and in the stream of material Gs=2.5kg/mzs and Gs=5kg/mzs modeling the conditions in a real boiler. The study shows that fluidized bed combustion can be considered to be one of the most efficient methods of neutralizing municipal waste while using its energy potential. They can be successfully used both in the process of combustion and gasification or pyrolysis
Wydawca
Czasopismo
Rocznik
Tom
Strony
47--58
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
Bibliografia
  • [1] Desai, BG. CO; emissions—Drivers across time and countries. Curr. Sci., 115, 386—387, (2018)
  • [2] lEA (2020), Global Energy Review 2019, IEA, Paris https://www.iea.org/reports/global-energy-review-Z0l9
  • [3] IEA (2020), World Energy Balances: Overview , [EA, Paryż https://www.iea.org/reports/world—energy-balances-overview
  • [4] COM (2015) 614, Communication from the commission to the European Parliament, the council, the European economic and social committee and the committee of the regions Towards a circular economy: A zero waste programme for Europe, Brussels 02.12.2015.
  • [5] Vekemans O., J. Chaouki, Municipal solid waste Co-firing in coal power plants: combustion performance, Dev. Combust. Technol. (2016) 118—142.
  • [6] Velis C.A., PJ . Longhurst, GH. Drew, R. Smith, S.J.T. Pollard Production and quality assurance of solid recovered fuels using mechanical—biological treatment (lVIBT) of waste: a comprehensive assessment Crit.Rev. Environ. Sci. Technol, 40 (2010), pp. 979-1105
  • [7] IEA (2019), Global Energy & CO2 Status Report 2019 , IEA, Paryż https://WWW.iea.org/reports/global- energy-co2-status-report-2019
  • 8] Montané D., S. Abello, X. Farriol, C. Berrueco Volatilization characteristics of solid recovered fuels (SRFs) Fuel Process. Technol, 113 (2013), pp. 90-96
  • [9] Gerassimidou S, Velis CA, Williams PT, Komilis D. Characterisation and composition identification of waste-derived fuels obtained from municipal solid waste using thermogravimetry: A review. Waste Management & Research. 2020;38(9):942-965. doi: 10.1 l77/0734242X20941085
  • [10] Porshnov D, Ozols V, Ansone-Bertina L, et al. (2018) Thermal decomposition study of major refuse derived fuel components. Energy Procedia 147: 48—53.
  • [11] Stępień P, Pulka J, Serowik M, et al. (2019) Thermogravimetric and calorimetric characteristics of alternative fuel in terms of its use in low-temperature pyrolysis. Waste Biomass and Valorization 10: 1669—1677
  • [12] Korkmaz, A, Yanik, J, Brebu, M, et al. (2009) Pyrolysis of the tetra pak. Waste Management 29: 2836-2841.
  • [13] Pohl, G (red.) ( 2010 ) Textiles, Polymers and Composites for Buildings. Cambridge : Woodhead Publishing
  • [14] Miranda, R, Sosa-Blanco, C, Bustos-Martinez, D, et al. (2007) Pyrolysis of textile wastes: 1. Kinetics and yields. Journal of Analytical Applied Pyrolysis 80: 489—495.
  • [15] Liu, Z, Wang, H, Hui, L (2018) Pulping and papermaking of non-wood fibers. In: Salim, NK (ed) Pulp and Paper Processing. London: IntechOpen, 3—31.
  • [16] Wong, KK, Gamage, N, Setunge, S, et al. (2014) Thermal behaviour of hardwood and softwood composites. Advanced Materials Research 905: 220—225.
  • [17 ] Bodzay, B, Banhegyi, G (2016) Polymer waste: Controlled breakdown or recycling? International Journal of Design Sciences Technology 22: 109—138.
  • [18] European Commission (2018) Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions — A European Strategy for Plastics in a Circular Economy. Available at: https://eur—lex.europa.eu/legal- content/EN/TXT/HTML/?uri=CELEX: 5201 8DC 002 8&from=EN (dostęp 14.04.2021).
  • [19] Eckardt, S., Albers, H., 2003. Specifying criteria for the utilisation of refuse derived fuels (RDF) in industrial combustion plants. Paper presented at Sardinia 2003, Ninth International Waste Management and Landfill Symposium, S. Margherita di Pula, Cagliari, Italy.
  • [20] Deans, I., Dimas, 1., Velis, C.A., 2016. Modelling of solid recovered fuel (SRF) properties based on material composition — chloride quality. In: Thomé—Kozmiensky, K.J., Thiel, S. (Eds), Waste Management: Volume 6 — Waste to Energy. TK Verlag, IRRC Waste-to-Energy 2016, 05—06 Sep 2016, Vienna, Austria, pp. 389— 399.
  • [21] E.C. Rada, M. Ragazzi Selective collection as a pretreatment for indirect solid recovered fuel generation ,. Waste Manage, 34 (2014), pp. 291-297
  • [22] W. Ma, S. Rotter Overview on the chlorine origin of MSW and Cl-originated corrosion during MSW & RDF combustion process 2nd International Conference on Bioinformatics and Biomedical Engineering, Shanghai, 2008; Shanghai, 2008 (2008)
  • [23] P. Vainikka, D. Bankiewicz, A. Frantsi, J. Silvennoinen, J. Hannula, P. Yrjas, M. Hupa High temperaturę ' corrosion of boiler waterwalls induced by chlorides and bromides. Part 1: Occurrence of the corrosive ash forming elements in a fluidised bed boiler co-firing solid recovered fuel Fuel, 90 (2011), pp. 2055-2063
  • [24] Lee, B.-K., M.J. Ellenbecker, and R. Moure—Eraso, Analyses of the recycling potential of medical plastic wastes. Waste Management, 2002. 22(5): p. 461-470.
  • [25] A. Cocchi, P. Andreini, L. Cassitto, L. Del Zotto, A. Tallini, G. Di Simone, G. Molinari, L. Cedola, 69th Conference of the Italian Thermal Engineering Association, ATI 2014 Energy enhancement of solid recovered fuel within systems of conventional thermal power generation Energy Procedia, 81 (2015), pp. 319-338
  • [26] Peng NN, Li Y, Liu ZG, Liu TT, Gai C (2016) Emission, distribution and toxicity of polycyclic aromatic hydrocarbons (PAHs) during municipal solid waste (MSW) and coal co-combustion. Sci Total Environ 565:1201—1207
  • [27] Peters, J.; May, J.; Strohle, J.; Epple, B. Flexibility of CFB Combustion: An Investigation of Co-Combustion with Biomass and RDF at Part Load in Pilot Scale. Energies 2020, 13, 4665. https://doi.org/10.3390/en13184665
  • [28] M. Soleh, Y. Hidayat and Z. Abidin, "Co-firing RDF in CFB Boiler Power Plant," 2019 International Conference on Technologies and Policies in Electric Power & Energy, Yogyakarta, Indonesia, 2019, pp. 1-6, doi: 10.1109/IEEECONF4852420199102591.
  • [29] Qin, J., Zhao, R., Chen, T. et al. Co-combustion of municipal solid waste and coal gangue in a circulating fluidized bed combustor. Int J Coal Sci Technol 6, 218—224 (2019). https://doi.org/10.1007/540789-018- 0231-4
  • [30] Zaini I. N., Wen Y., Mousa E., Jonsson P. G., Yang W., Primary fragmentation behavior of refuse derived fuel pellets during rapid pyrolysis, Fuel Processing Technology, Volume 216, 2021, 106796, ISSN 0378-3820, https://doi.org/10. lOl6/j.fuproc.202l.106796.
  • [31] Yang, Y., Liew, RK., Tamothran, A.M. et al. Gasification of refuse-derived fuel from municipal solid waste for energy production: a review. Environ Chem Lett 19, 2127—2140 (2021). https://doi.org/10.1007/510311-02001177-5
  • [32] PN—80/G-0451 l. Paliwa stałe. Oznaczanie zawartości wilgoci.
  • [33] PN-81/G-04516
  • [34] PN—80/G-045 12
  • [35] Róg, L., Wawrzynkiewicz, W., Hama1a, K., Rompalski, P., Solik, M. Wyznaczanie dokładności pobierania i przygotowywania próbek analitycznych biopaliw i stałych paliw wtórnych. Prace Naukowe GIG. Górnictwo i Środowisko / Główny Instytut Górnictwa. 2008, (3), ISBN: 978-83-62922—64-2, 39—49.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-44cf364f-59d7-48a7-9d75-a183739d8684
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.