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Abstract 
 

The reliability analysis of a multistate complex system subjected to varying in time its operation process is 

performed. A semi-Markov process is applied to construct the multistate model of the system operation process 

and its main characteristics are determined. Analytical linking of the system operation process model with the 

system multistate reliability model is proposed to get a general reliability model of the complex system 

operating at varying in time operation conditions and to find its reliability characteristics. The constructed 

integrated general model of a complex multistate system reliability, linking its reliability model and its 

operation process model and considering variable at different operation states its reliability structure and its 

components reliability parameters is applied to the reliability evaluation of an exemplary system. 

 

1. Introduction 
 

As the complexity of the systems’ operation 

processes and their influence on changing in time the 

systems’ reliability parameters are very often met in 

real practice then there is the practical importance 

and need of an approach presented in the paper and 

linking the system reliability model and the system 

operation process model into an integrated general 

model in reliability assessment of real technical 

systems is proposed.  

From the point of view of more precise analysis of 

the reliability of complex systems the developed 

methods should be based on a multistate approach 

(Kołowrocki K. [2], Kołowrocki K., Soszyńska-

Budny J. [2], Soszyńska-Budny J. [4], Xue J. [6], Yu 

K. et. al. [7]) to these complex systems reliability 

analysis instead of normally used two-state approach. 

This will enable different complex systems inside 

reliability states to be distinguished, such that they 

ensure a demanded level of the system operation 

effectiveness with accepted consequences of the 

dangerous accidents for the environment, population, 

etc. 

 

2. System operation process 
 

We assume that a system during its operation at the 

fixed moment ,t  ,,0 t  may be at one of ,  

,N  different operations states ,bz  ,...,2,1b . 

Consequently, we mark by ),(tZ  ,,0 t  the 

system operation process, that is a function of a 

continuous variable ,t  taking discrete values at the 

set },...,,{ 21 vzzz  of the system operation states. We 

assume a semi-Markov model [1], [2] of the system 

operation process )(tZ  and we mark by bl  its 

random conditional sojourn times at the operation 

states bz , when its next operation state is ,lz  

,,...,2,1, vlb   .lb   

Consequently, the operation process may be 

described by the following parameters:  

- the vector of the initial probabilities of the system 

operation process )(tZ  staying at the particular 

operations states at the moment 0t  

 

   )],0(),...,0(),0([)]0([ 211 vvb pppp   (1) 
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where  

 

   ),)0(()0( bb zZPp  ,...,2,1b ; (2) 

 

- the matrix of the probabilities of the system 

operation process Z(t) transitions between the 

operation states 
bz  and 

lz , ,,...,2,1, lb  lb   
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where 0bbp  for ;,...,2,1 b  
 

- the matrix of the conditional distribution 

functions of the system operation process )(tZ  

conditional sojourn times blθ  at the operation 

states 
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where  

 

   ),()( tθPtH blbl   0)( tHbb , (5) 

 

for ,,...,2,1, lb lb  . 

 

Having identified the probabilities of transitions blp  

defined by (3) between the operation states and the 

distributions of conditional sojourn times blθ , the 

mean values bM  of the system operation process 

)(tZ  unconditional sojourn times ,b  ,,...,2,1 b  

at the particular operation states can be determined 

by 

 

   






1

][
l

blblbb MpEM , ,,...,2,1 b  (6) 

 

where blM  are the mean values of the conditional 

sojourn times bl  given by 

 

   ,)(][

0




 dttthEM blblbl  ,,...,2,1, lb ,lb   (7) 

and  

 

   
dt

tdH
th bl

bl

)(
)(  ,  ,,...,2,1, lb  ,lb   (8) 

 

are the conditional density functions of the system 

operation process )(tZ  conditional sojourn times 

,bl ,,...,2,1, lb ,lb   at the particular operation 

states corresponding to the distribution functions 

)(tHbl . 

Further, the limit values of the system operation 

process )(tZ  transient probabilities at the particular 

operation states  

 

   ))(()( bb ztZPtp   , ,,...,2,1 b   

 

can be determined from the following relationship 
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where bM  are given by (6), while  the steady 

probabilities b  of the vector  xb 1][  satisfy the 

system of equations 
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where     ,...,, 21b  and the matrix  blp  is 

defined by (3).  

 

3. Reliability of multistate system 
 

In the multistate reliability analysis to define a 

system composed of n, n  N ageing components we 

assume that: 

– Ei, i = 1,2,...,n, are components of a system, 

– all components and a system under consideration 

have the set of reliability states {0,1,...,z}, z ≥ 1, 

– the reliability states are ordered, the state 0 is the 

worst and the state z is the best, 

– the component and the system reliability states 

degrade with time t, 

– Ti(u), i = 1,2,...,n, n  N, are independent random 

variables  representing the lifetimes of 

components Ei in the reliability state subset 

{u,u + 1,...,z}, while they were in the reliability 

state z at the moment t = 0, 

– T(u) is a random variable representing the lifetime 

of a system in the reliability state subset  
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{u,u + 1,...,z}, while it was in the reliability state z 

at the moment t = 0, 

– si(t) is a component Ei reliability state at the 

moment t, t0,), given that it was in the 

reliability state z  at the moment t = 0, 

– s(t) is the system reliability state at the moment t, 

t0,), given that it was in the reliability state z 

at the moment t = 0. 

 

The above assumptions mean that the reliability 

states of the ageing system and components may be 

changed in time only from better to worse.  

 

Definition 1. A vector 

 

   )],(,),1,(),0,([),( ztRtRtRtR iiii  , (11) 

 

for t0,), i = 1,2,...,n, where 

 

   ))(())0(|)((),( tuTPzsutsPutR iiii   (12) 

 

for t0,), ,,,1,0 zu  is the probability that the 

component Ei is in the reliability state subset 

},...,1,{ zuu   at the moment t, t0,), while it was 

in the reliability state z at the moment t = 0, is called 

the multistate reliability function of a component Ei. 

 

Definition 2. A vector 

 

   )],,(,),1,(),0,([),( ztttt RSRR  ),,0 t  (13) 

 

where   

 

   ),( utR  = P(s(t)  u  s(0) = z) = P(T(u) > t) (14) 

 

for t0,), u = 0,1,...,z, is the probability  that the 

system is in the reliability state subset {u,u + 1,...,z} 

at the moment t, t0,), while it was in the 

reliability state z at the moment t = 0, is called the 

multistate reliability function of a system.  

The reliability functions ),( utRi and R(t,u), t0,), 

u = 0,1,...,z, defined by (12) and (14) are called the 

coordinates of the components and the system 

multistate reliability functions ),( tRi  and R(t , ) 

given by (11) and (13) respectively. It is clear that 

from Definition 1 and Definition 2, for ,0u  we 

have  

 

   Ri(t,0) = 1 and .1)0,( tR   

 

Under the above definitions, the mean value of the 

system lifetime T(u) in the reliability state subset 

{u,u+1,...,z} is given by 

   




0

,),()( dtutu R  u = 1,2,…,z, (15) 

 

whereas the standard deviation of the system lifetime 

T(u) in the reliability state subset {u,u+1,...,z} is 

given by  

 

   ,)]([),(2)]([)( 2

0

udtuttuTDu   


R  (16) 

 

where R(t,u), t0,), are defined according to (14) 

and μ(u), u = 1,2,…,z, are given by (15). 

Now, after introducing the notion of the multistate 

reliability analysis, we may define basic multistate 

reliability structures. 

 

Definition 3. A multistate system is called series if its 

lifetime T(u) in the reliability state subset 

{u,u + 1,...,z} is given by  

 

   T(u) = )}({min
1

uTi
ni

, u = 1,2,...,z. (17) 

 

The reliability function of the multistate series 

system is given by the vector [2] 

 

   ),( tR  = [1, )1,(tR ,..., ),( ztR ] (18) 

 

with the coordinates    

 

   ),( utR  = 


n

i

i utR
1

),( , ),,0 t  (19) 

 

for u = 1,2,...,z. 

 

Definition 4. A multistate system is called series-

parallel if its lifetime T(u) in the reliability state 

subset {u,u + 1,...,z} is given by  

 

   T(u) = )}}({min{max
11

uTij
ljki i

, u = 1,2,...,z, (20) 

 

where k is the number of series subsystems linked in 

parallel and li is the number of components in the i
th
 

series subsystem. The reliability function of the 

multistate series-parallel system is given by the 

vector [2] 

 

   R(t , ) = [1,R(t,1),...,R(t,z)], (21) 

 

with the coordinates   
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   R(t,u) = 



il

j

ij

k

i

utR
11

)],(1[1 , (22) 

 

for t0,), u = 1,2,...,z. 

 

Definition 5. A multistate system is called series-“m 

out of k” system if its lifetime T(u) in the reliability 

state subset },...,1,{ zuu   is given by 

 

   T(u) = ),(
)1(

uT
mk 

 m = 1,2,...,k, u = 1,2,...,z, (23) 

 

where )(
)1(

uT
mk 

 is the (k – m + 1)
th
 order statistic in 

the set of random variables  

 

   Ti(u) = )}({min
1

uTij
lj i

,  i = 1,2,...,k, u = 1,2,...,z, 

 
where li is the number of components in the i

th
 series 

subsystem. The reliability function of the multistate 

series-“m out of k” system is given by the vector 

 

   R(t , ) = [1,R(t,1),...,R(t,z)], (24) 

 

with the coordinates 

 

   ),( utR = 
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for t0,), u = 1,2,...,z. 

 

4. Reliability of multistate system at variable 

operation conditions 
 

We assume that every operation state of the system 

operation process Z(t), t0,), described in 

Section 2, have an influence on the system reliability 

[2], [4]. Therefore, the system component’s 

reliability at the particular operation state ,bz

vb ,...,2,1 , can be described using the conditional 

reliability function 

 

     ),)(|)(()( )()(

b
b

i

b

i ztZtuTPt,u R  (26) 

 

for t0,), ,,...,2,1 b  that is the conditional 

probability that the system component’s conditional 

lifetime )()( uT b
i  is greater than t , while the system 

operation process )(tZ  is at the operation state ,bz  
,...,2,1b  [2]. 

 

Further, we denote the unconditional reliability 

function of the system by 

 

   ))((),( tuTPut R , t0,),   (27) 

 

where )(uT  is the system unconditional lifetime in 

the reliability state subset {u,u + 1,...,z}. 

 

In the case when the system operation time θ  is 

large enough, the unconditional reliability function 

of the system is approximated by [2] 

 

    
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1

)(
,)()( RR   t0,),   (28) 

 

where ,bp ,,...,2,1 b  are the system operation 

process limit transient probabilities given by (9). 

Hence the mean value (15) of the system 

unconditional lifetime T(u) is given by 

 

   )()(
1

upu
b

bb





 , (29) 

 

where b  are the mean values of the system 

conditional lifetimes )()( uT b
i  at the operation state 

,bz ,...,2,1b , given by 

 

     dtut,u
b

ib 




0

)(
)()( R ,  ,,...,2,1 b  (30) 

 

  )(
)(

b

i t,uR , ,,...,2,1 b  are defined by (26) and bp  

are given by (9). 

 

Whereas, the standard deviation (16) of the system 

unconditional lifetime T(u) is given by  

 

   ,)(),(2)( 2

0

udtuttu   


R  (31) 

 

where ),( utR  is given by (27) and )(u  is given by 

(29). 

 

Moreover, the mean values of the system lifetimes in 

particular reliability states are given by 

 

   ),1()()(  uuu   u = 0,1,...,z – 1, 

 

   ),()( zz    (32) 
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where (u), u = 0,1,...,z are given by (29). 

Further, if r is the system critical reliability state, 

then the system risk function is given by [2] 

 

   ),,(1)( rtt Rr   t0,), (33) 

 

and if τ is the moment when the system risk function 

exceeds a permitted level δ, then if )t(1
r  exists we 

have 

 

   )(1 δ rτ , (34) 

 

where )t(1
r  is the inverse function of the risk 

function )t(r . 

 

5. The exemplary system operation and 

reliability evaluation 
 

5.1. The exemplary system description 
 

We consider an exemplary system S consisting of 

subsystems S1 and S2 composed of the elements )(
ijE

, i = 1,2,…,i
(υ)

, j = 1,2,…,j
(υ)

,  = 1,2. The parameters 

i
(υ)

 and j
(υ)

 are called the system structure shape 

parameters and are different for particular 

subsystems (Figure 1): 

- subsystem S1 is composed of the components 

,)1(
ijE  ,2,1i  ,3,2,1j  

- subsystem S2 is composed of the components 

,)2(
ijE  ,4,3,2,1i  .2,1j  

Moreover, we assume that the exemplary system 

reliability structure and its subsystems and 

components reliability depend on its changing in 

time operation states. 

 

 
 

Figure 1. The scheme of the exemplary system S  

reliability structure 
 

 

 

5.2. Analytical approach to an exemplary 

system operation process analysis 
 

The exemplary system S illustrated in Figure 1 is 

operating at v = 4 different operation states ,1z ,2z

3z  and 4z . Its structure is different at particular 

operation states: 

- at the operation state z1 the system is identical 

with subsystem S1 having a series-parallel 

structure. 

- at the operation state z2 the system is identical 

with subsystem S2 having a series-parallel 

structure. 

- at the operation state z3 the system is series 

composed of the subsystems S1 and S2 having 

series-parallel structure. 

- at the operation state z4 the system is series 

composed of the series-parallel subsystem S1 and 

series-“2 out of 4” subsystem S2. 

The probabilities of the initial operation states of this 

system operation process Z(t), t0,), are fixed 

arbitrarily [2] in the following way  

 

   ].40.0,29.0,10.0,21.0[)]0([ bp  (35) 

 

The probabilities of the exemplary system operation 

process )(tZ  transitions between the operation states 

bz  and lz , ,4,3,2,1, lb  lb   are also fixed 

arbitrarily [2] and given in the matrix below  

 

   .

030.022.048.0

72.0016.012.0

50.030.0020.0

46.032.022.00

][



















blp  (36) 

 

Moreover, we assume that the distribution functions 

of the exemplary system operation process 

conditional sojourn times measured in days are 

exponential and given as follows: 
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where bl  are given as follows: 
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for t0,). 

Applying (37)-(38) and (8) to the conditional 

distributions given by (7), the conditional mean 
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values ][ blbl EM  , ,4,3,2,1, lb of the exemplary 

system sojourn times at the particular operation 

states measured in days are fixed as follows: 

 

   ,19212 M  ,48013 M  ,20014 M  

   ,9621 M  ,8123 M  ,5524 M  

   ,87031 M  ,48032 M  ,30034 M  
   ,32541 M  ,51042 M  .43843 M  (39) 

 

Based on the formula (6) and applying (36), (39), the 

system operation process unconditional mean 

sojourn times b , vb ,...,2,1 , measured in days at 

the particular operation states are given by 

 

   84.287][ 11  EM , 00.71][ 22  EM ,  

   20.397][ 33  EM , .60.399][ 44  EM  (40) 

 

Next, considering (37), the approximate solutions of 

the system of equations (10) are: 

 

   ,236.01     ,169.02   

   ,234.03     .361.04   (41) 

 

Further, applying (9) and (41), the limit values of the 

system operation process transient probabilities 

)(tpb , ,,...,2,1 vb   at the operations states 
bz  can 

be found after completing a few steps described in 

[2] and get 

 

   ,214.01 p    ,038.02 p  

   ,293.03 p    .455.04 p  (42) 

 

5.3. Analytical approach to an exemplary 

system reliability analysis 
 

In the reliability analysis of the considered 

exemplary system and its components, we arbitrarily 

distinguish the following four reliability states 

(z = 3): 

- a reliability state 3 – the system operation is 

fully effective,  

- a reliability state 2 – the system operation is less 

effective because of ageing,  

- a reliability state 1 – the system operation is less 

effective because of ageing and more dangerous 

for the environment,  

- a reliability state 0 – the system is destroyed. 

 

We assume that the transitions between the 

components reliability states are possible only from 

better to worse ones and we fix that the system and 

its components critical reliability state is r = 2. 

 

The conditional system reliability functions are given 

by the vector 
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
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
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j

ij tR
1

2

1

)4()2( ])]1,([1[  (5) 

 

for u = 1,2,3, t0,). 

Moreover, we assume that the system elements )(
ijE  

having the lifetimes ),()( uTij
  i = 1,2,…,i

(υ)
, 

j = 1,2,…, ,)(j  u = 1,2,3,  = 1,2, in the reliability 

states subsets {1,2,3}, {2,3}, {3} respectively, have 

the exponential reliability functions  

 

       




  tuTPutR

b

ij

b

ij

)()()()( )(),(    

 

                        ,)(exp
)()(





 tu

b

ij
  
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for i = 1,2,...,i
()

, j = 1,2,..., ,)(j  u = 1,2,3,  = 1,2, 

t0,), with the parameters different at various 

operation states and presented in Table 1. 

 

In the case when the system operation time is large 

enough its unconditional four-state reliability 

function is given by the vector  

 

   ),( tR ),1,(,1[ tR ),2,(tR )],3,(tR  t0,), (6) 

 

where according to (28), the vector coordinates are 

given respectively by 

 

   ),( utR 



4

1

)()],([
b

b
b utp R , (7) 

 

where the coordinates 
)()],([ butR  are given by (44)-

(47) and pb are the exemplary system operation 

process transient probabilities at the operation states 

determined by (9). 

 

According to (9) and (49), the unconditional four-

state reliability function (48) coordinates are 

respectively 

 

   )1,(tR 0.455(–3exp[–0.0176t] + 8exp[–0.0148t] 

+ 6exp[–0.0144t] – 6exp[–0.012t] 

– 16exp[–0.0116t] + 12exp[–0.0088t]) 

+ 0.293(exp[–0.00148t] – 4exp[–0.0127t] 

– 2exp[–0.0116t] + 6exp[–0.0106t] 

+ 8exp[–0.0095t] – 4exp[–0.0085t] 

– 12exp[–0.0074t] + 8exp[–0.0053t]) 

+ 0.214(–exp[–0.006t] + 2exp[–0.003t]) 

+ 0.038(–exp[–0.0112t] + 4exp[–0.0084t] 

– 6exp[–0.0056t] + 4exp[–0.0028t]) 

 

 

   )2,(tR 0.455(–3exp[–0.0188t] + 8exp[–0.0158t] 

+ 6exp[–0.0154t] – 6exp[–0.0128t] 

– 16exp[–0.0124t] + 12exp[–0.0094t]) 

+ 0.293(exp[–0.00156t] – 4exp[–0.0134t] 

– 2exp[–0.0122t] + 6exp[–0.0112t] 

+ 8exp[–0.01t] – 4exp[–0.009t] 

– 12exp[–0.0078t] + 8exp[–0.0056t]) 

+ 0.214(–exp[–0.0062t]  

+ 2exp[–0.0031t]) + 0.038(–exp[–0.012t]  

+ 4exp[–0.009t] – 6exp[–0.006t] + 

 4exp[–0.003t])  

 

   )3,(tR 0.455(–3exp[–0.0202t] + 8exp[–0.0169t] 

+ 6exp[–0.0167t] – 6exp[–0.0136t] 

– 16exp[–0.0134t] + 12exp[–0.0101t]) 

+ 0.293(exp[–0.00162t] – 4exp[–0.0139t] 

– 2exp[–0.0127t] + 6exp[–0.0116t] 

+ 8exp[–0.0104t] – 4exp[–0.0093t] 

– 12exp[–0.0081t] + 8exp[–0.0058t]) 

+ 0.214(–exp[–0.0064t]+2exp[–0.0032t]) 

+ 0.038(–exp[–0.0128t] + 4exp[–0.0096t] 

– 6exp[–0.0064t] + 4exp[–0.0032t]) 

 

The graph of the four-state exemplary system 

reliability function is illustrated in Figure 2.  

 

 
 

Figure 2. The graph of the exemplary system 

reliability function ),( tR  
coordinates 

Table 1. Exemplary system parameters   )()( )(
b

ij u  for particular subsystems at the particular operation states 

  )()(
)(

b

ij u
  

u 1 2 3 

          j 
  i 

1 2 3 1 2 3 1 2 3 

S  z1, z2 

1S  {1,2} 0.000
8 

0.001

1 

0.001

1 

0.000
9 

0.001

1 

0.001

1 

0.000

9 
0.0012 0.001

1 
2S  {1,2,3,4} 0.001

3 

0.001

5 
- 0.001

4 

0.001

6 
- 0.001

5 
0.0017 - 

z3 

1S  {1,2} 0.000

9 

0.001

2 

0.001

1 
0.001 0.001

2 

0.001

2 
0.001 0.0013 0.001

2 
2S  {1,2,3,4} 0.000

9 

0.001

2 
- 0.001 0.001

2 
- 0.001 0.0013 - 

z4 

1S  {1,2} 0.000

9 

0.001

2 

0.001

1 
0.001 0.001

2 

0.001

2 
0.001 0.0013 0.001

2 
2S  {1,2,3,4} 0.001

3 

0.001

5 
- 0.001

4 

0.001

6 
- 0.001

5 
0.0018 - 
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The expected values and standard deviations of the 

system unconditional lifetimes in the reliability state 

subsets }3,2,1{ , }3,2{ , }3{ , according to (29), (31) 

and considering (30), respectively are:  

 

   )1(  377.294, )2(  357.542, 

 

   )3(  341.379,                                                 (50) 

 

   )1(  288.000, )2(  275.011, 

 

   )3(  261.614.                                                 (51) 

 

Further, considering (32), the mean values of the 

system unconditional lifetimes in the particular 

reliability states 1, 2, 3, respectively are: 

 

   ,752.19)2()1()1(    

 

   163.16)3()2()2(   , 

 

   .379.341)3()3(                                         

(52) 

 

Since the critical reliability state is r =2, then the 

system risk function, according to (33), is given by  

 

   r(t) )2,(1 tR , t0,), 

 

where )2,(tR  is given by (50). 

Hence, by (34), the moment when the system risk 

function exceeds a permitted level, for instance  

 = 0.05, is  

 

    = r
1

()   68.572. 

 

The graph of the risk function r(t) of the exemplary 

four-state system operating at the variable conditions 

is given in Figure 3. 

 

 
 

Figure 3. The graph of the exemplary system risk 

function r(t) 

6. Conclusions 
 

Presented in this paper results are partly coming from 

the general analytical models of complex technical 

multi-state systems reliability [2]. The paper delivers 

the procedures and algorithms that allow to find the 

main an practically important reliability 

characteristics of the complex technical systems with 

independent components at the variable operation 

condition. The application of the presented analitical 

model to reliability prediction of an exemplary 

system yields its reliability characteristics 

approximate evaluation that are close to its suitable 

reliability characteristics obtained by Monte Carlo 

simulation method application presented in [3]. 
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