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The paper describes the results of analysis on the resonance phenomenon in a 
parallel RLCα circuit with supercapacitor modeled as a fractional-order capacitance. A 
complex, more accurate fractional-order model has been taken into analysis. Formulas 
for frequency characteristics and resonance conditions have been derived and presented 
by simulation studies of the concerned fractional-order system. 
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1. Supercapacitor fractional-order models 
 

Many electrical models of supercapacitor exist in literature [1-2], derived 
from classic impedance models. In modern electrical engineering the concept 
of fractional-order reactive elements Lβ, Cα has been introduced, describing 
real, lossy coils [3] and capacitors, eg. supercapacitors [4]. Fractional-order 
real inductance and supercapacitor impedance in frequency domain in the 
simplest, but also less accurate case is described by relations [3], [5-6]:  

    LRZ  jj LL      R      (1) 
and: 

    1
CC jj  CRZ     R      (2) 

where: RL, RC - internal series resistances α, β - fractional-order parameters. 
The resistance RC for supercapacitor is defined as one of their basic 

component - ESR - the Equivalent Series Resistance. It models energy losses 
on leads and is of a few dozen to fractions of ohms. The higher supercapacitor 
capacitance is, the lower is its ESR resistance. [7]. 

Model given by relation (2) is accurate only for a specific range of 
frequencies, up to approx. 215 mHz. Therefore a more complex fractional-
order model has been introduced, called model based on fractional poles and 
zeros, given as [8]: 
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where: k - parameter describing the inverse of the capacitance C, ω0 - radial 
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frequency, at which the impedance phase changes, α, β - fractional-order parameters. 
The above model describes well supercapacitor impedance to the 

frequency of about 100 Hz. It is possible to select such values of the 
parameters L and Cα to observe the resonance phenomenon in the considered 
circuit. The paper [9] describes resonance conditions in the ideal parallel LβCα 
circuit. Resonance phenomenon in a simple series circuit with supercapacitor, 
modeled as a fractional-order reactive element has been examined in [10-11]. 
The same problem has been analyzed with real, fractional-order coil [12]. The 
paper [13] is the first part of the resonance phenomena analysis in a parallel 
circuit. The article is a continuation of resonance phenomena analysis in 
parallel circuit of RLCα class with supercapacitor in frequency domain, using 
more complex fractional-order model, based on fractional poles and zeros, 
given by formula (3). 
 

2. Model of the system 
 
Analyzed parallel RLCα model with supercapacitor is presented in Fig. 1: 
 

 
 

Fig. 1. Parallel RLCα circuit with supercapacitor  
 

It consists of a lossless coil with an inductance L and a real, fractional - 
order supercapacitor Cα of impedance given by relation (3).  

The equivalent admittance of the circuit from Fig. 1 seen from the terminals 
1 - 1’ can be written as: 
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Transforming formula (4), finally the equivalent admittance can be obtained 
in the canonical form: 

      jImjjRe)j( YYY  , (5) 
as: 
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and: 
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(7) 

Equivalent admittance module |Y(jω)| and phase φ(ω) of the parallel RLCα 
circuit with supercapacitor model based on fractional poles and zeros are given 
by relations: 
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where: 
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and: 
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Derived relations describing admittance of the analyzed parallel RLCα circuit 
have been simulated and illustrated on graphs shown in Figs. 2 - 5, as a function 
of single variable - radial frequency ω with given parameter α value and as 
a function of two variables α and ω.  
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Fig. 2. Graphs of the function based on formula (6) for α <0,1> : a. Re{Y(jω)}, b. Re{Y(jω,α)} 
 

 
 

Fig. 3. Graphs of the function based on formula (7) for α <0,1> : a. Im{Y(jω)}, b. Im{Y(jω,α)} 

 
 

Fig. 4. Graphs of the function based on formula (8) for α <0,1> : a. |Y(jω)|, b. |Y(jω,α)| 
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Fig. 5. Graphs of the function based on formula (10) for α <0,1> : a φ(ω), b. φ(ω,α) 
 

Simulations have been conducted for real values of parameters of the parallel 
RLCα circuit: coil of inductance L = 10 H, and a Panasonic supercapacitor with 
a nominal capacitance C = 0.1 F and determined parameter values: β = 0.92, 
ω0 = 0.1958, k = 10.87, RC = 25 Ω [5]. Experiments on supercapacitors prove 
that the coefficient α changes widely within a range of <0,1>, but the value of β 
is generally more or less constant, of about 1 [8]. Therefore, a fixed value of the 
parameter β has been implemented for simulations. 
 

3. Analysis of phase resonance conditions 
 

Resonance radial frequency for the discussed circuit of RLCα class with 
supercapacitor, can be determined from the general phase resonance condition 
Im{Y(jω)} = 0. This condition leads to a nonlinear equation, of variable ω, 
given in the form of: 
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where δ(ω) is defined by formula (9). 
The second general phase resonance condition Im{Z(jω)} = 0 leads to the 

same equation as formula (11). It can be noticed that the determination of 
resonance radial frequency ωrez  in a closed solution, based on formula (11) is 
not possible, because formula (11) is a transcendental equation. Its value can be 
found numerically. 

For the analyzed parallel RLCα circuit with fractional-order capacitor (eg. 
supercapacitor), resonance radial frequency have been determined, for α 
coefficient changing within α <0,1>, which have been presented in graphs 
from Figs. 6-7. Simulations have been performed for selected parameter values: 
the inductance L and the series resistance RC of the circuit. 
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Fig. 6. Determined resonance radial frequency ωrez as a function of α <0,1> for selected 
inductance L values in the analyzed circuit 

 

 
 

Fig. 7. Determined resonance radial frequency ωrez as a function of α <0,1> for selected 
values of the supercapacitor internal series resistance RC in the analyzed circuit 

 
The maximum of resonance radial frequency can be read from Figs. 6-7, 

which shifts towards higher values, when the value of the inductance L is lower, 
or the internal series resistance RC is higher. The maximum of resonance radial 
frequency appears when the fractional-order parameter equals α ≈ 0.9. The 
simulation also shows that for certain circuit parameter values, the resonance 
frequency does not exist, when the coefficient α > 0.92. Then, equation (11) has 
no solution in the set of positive real numbers. The existence of resonance radial 
frequency is not influenced by the inductance L, or the resistance RC, value 
change. These parameters have an influence only on the resonance radial 
frequency ωrez value. 
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4. Summary 
 
The article presents an analysis of resonance phenomenon in a parallel RLCα 

circuit, with a capacitor modeled as a fractional-order element 
(eg.supercapacitor). A more complex as well as accurate fractional-order model 
has been used to the analysis, called model based on fractional poles and zeros. 
Relations for the admittance of the circuit and for the resonance frequency have 
been derived. It depends on six parameters: the inductance L, values of 
parameters: k, α, β, ω0 and the internal series resistance RC. Formula describing 
the resonance radial frequency has a transcendental form, so it can be solved 
effectively in a numerical way. The shape of the resonance radial frequency 
dependence on parameter α for the analyzed circuit with supercapacitor is not 
symmetrical, for small values of coefficient α the resonance frequency reaches 
very high values, but for α > 0.92 it does not exist (equation (11) does not have 
a solution in a set of positive real numbers), and for α ≈ 0.9 it reaches the local 
maximum. Using more accurate fractional-order supercapacitor model with 
two coefficients of fractional order makes the description of phase resonance 
phenomenon in parallel RLCα circuit more complex.  
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