PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of groundwater in aluminium slag disposal area

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Aluminium slag waste is a residue from aluminium recycling activities, classified as hazardous waste so its disposal into the environment without processing can cause environmental problems, including groundwater pollution. There are 90 illegal dumping areas for aluminium slag waste spread in the Sumobito District, Jombang Regency. This study aims to evaluate the quality of shallow groundwater surrounding aluminium slag disposal in the Sumobito District for drinking water. The methods applied an integrated water quality index (WQI) and heavy metal pollution index (HPI), multivariate analysis (principal component analysis (PCA) and hierarchical clustering analysis (HCA)), and geospatial analysis for assessing groundwater quality. The field campaign conducted 40 groundwater samples of the dug wells for measuring the groundwater level and 30 of them were analysed for the chemical contents. The results showed that some locations exceeded the quality standards for total dissolved solids (TDS), electrical conductivity (EC), and Al2+. The WQI shows that 7% of dug well samples are in poor drinking water condition, 73% are in good condition, and 20% are in excellent condition. The level of heavy metal contamination based on HPI is below the standard limit, but 13.3% of the water samples are classified as high contamination. The multivariate analysis shows that anthropogenic factors and natural sources/geogenic factors contributed to shallow groundwater quality in the study area. The geospatial map shows that the distribution of poor groundwater quality is in the northern area, following the direction of groundwater flow, and is a downstream area of aluminium slag waste contaminants.
Wydawca
Rocznik
Tom
Strony
78--90
Opis fizyczny
Bibliogr. 50 poz., mapy, tab., wykr.
Twórcy
  • Diponegoro University, Faculty of Engineering, Geological Engineering, Prof. Sudarto SH, Tembalang, 50275, Semarang, Indonesia
  • Diponegoro University, Graduate School of Environmental Science, Semarang, Indonesia
Bibliografia
  • Adimalla, N. (2020) “Controlling factors and mechanism of groundwater quality variation in semiarid region of South India: an approach of water quality index (WQI) and health risk assessment (HRA),” Environmental Geochemistry and Health, 42(6), pp. 1725–1752. Available at: https://doi.org/10.1007/s10653-019-00374-8.
  • Amano, K.O.A. et al. (2021) “Effect of waste landfill site on surface and ground water drinking quality,” Water and Environment Journal, 35(2), pp. 715–729. Available at: https://doi.org/10.1111/wej.12664.
  • Arslan, H. (2012) “Spatial and temporal mapping of groundwater salinity using ordinary kriging and indicator kriging: The case of Bafra Plain, Turkey,” Agricultural Water Management, 113, pp. 57–63. Available at: https://doi.org/10.1016/j.agwat.2012.06.015.
  • Arslan, H. and Turan, N.A. (2015) “Estimation of spatial distribution of heavy metals in groundwater using interpolation methods and multivariate statistical techniques; its suitability for drinking and irrigation purposes in the Middle Black Sea Region of Turkey,” Environmental Monitoring and Assessment, 187(8). Available at: https://doi.org/10.1007/s10661-015-4725-x.
  • Attia, N., Hassan, K.M. and Hassan, M.I. (2018) “Environmental impacts of aluminum dross after metal extraction,” in Light Metals 2018. Springer International Publishing, pp. 1155–1161. Available at: https://doi.org/10.1007/978-3-319-72284-9_151.
  • Baird, R. and Bridgewater, L. (eds) (2017) Standard methods for the examination of water and wastewater. 23rd edn. American Public Health Association.
  • Bignucolo, A. et al. (2012) “The molecular connection between aluminum toxicity, anemia, inflammation and obesity: Therapeutic cues,” in D.S. Silverberg (ed.) Anemia. InTech, pp. 403–424. Available at: https://doi.org/10.5772/30273.
  • Boateng, T.K., Opoku, F. and Akoto, O. (2019) “Heavy metal contamination assessment of groundwater quality: A case study of Oti landfill site, Kumasi,” Applied Water Science, 9(2). Available at: https://doi.org/10.1007/s13201-019-0915-y.
  • BPS (2021) Kecamatan Sumobito dalam angka 2020 [Sumobito District in figures 2020]. Jombang: Badan Pusat Statistik Kabupaten Jombang.
  • Buragohain, M., Bhuyan, B. and Sarma, H.P. (2010) “Seasonal variations of lead, arsenic, cadmium and aluminium contamination of groundwater in Dhemaji district, Assam, India,” Environmental Monitoring and Assessment, 170, pp. 345–351. Available at: https://doi.org/10.1007/s10661-009-1237-6.
  • Calmuc, M. et al. (2020) “A comparative approach to a series of physico-chemical quality indices used in assessing water quality in the Lower Danube,” Water, 12(11), 3239. Available at: https://doi.org/10.3390/w12113239.
  • Elubid, B.A. et al. (2019) “Geospatial distributions of groundwater quality in Gedaref State using geographic information system (GIS) and drinking water quality index (DWQI),” International Journal of Environmental Research and Public Health, 16(5), 731. Available at: https://doi.org/10.3390/ijerph16050731.
  • Fatoki, O. and Awofolu, O. (2003) “Methods for selective determination of persistent organochlorine pesticide residues in water and sediments by capillary gas chromatography and electron-capture detection,” Journal of Chromatography A, 983(1–2), pp. 225–236. Available at: https://doi.org/10.1016/s0021-9673(02)01730-2.
  • Gunarathna, M.H.J.P., Kumari, M.K.N. and Nirmanee, K.G.S. (2016) “Evaluation of interpolation methods for mapping pH of groundwater,” International Journal of Latest Technology in Engineering, Management & Applied Science, 5(3), pp. 1–5. Available at: https://www.ijltemas.in/DigitalLibrary/Vol.5Issue3/01-05.pdf (Accessed: April 10, 2022).
  • Hartmann, K., Krois, J. and Waske, B. (2018) E-Learning Project SOGA: Statistics and geospatial data analysis. Berlin: Department of Earth Sciences, Freie Universitaet Berlin.
  • Horton, R.K. (1965) “An index number system for rating water quality,” Journal of the Water Pollution Control Federation, 37, pp. 300–306.
  • Huang, X.-L. et al. (2014) “Characterization of salt cake from secondary aluminum production,” Journal of Hazardous Materials, 273, pp. 192–199. Available at: https://doi.org/10.1016/j.jhazmat.2014.02.035.
  • Islam, A. et al. (2018) “Assessing groundwater quality and its sustainability in Joypurhat district of Bangladesh using GIS and multivariate statistical approaches,” Environment, Development and Sustainability, 20(5), pp. 1935–1959. Available at: https://doi.org/10.1007/s10668-017-9971-3.
  • Iwar, R.T., Utsev, J.T. and Hassan, M. (2021) “Assessment of heavy metal and physico-chemical pollution loadings of River Benue water at Makurdi using water quality index (WQI) and multivariate statistics,” Applied Water Science, 11(7). Available at: https://doi.org/10.1007/s13201-021-01456-8.
  • Jombangkab (2015) AMDAL Kawasan Lingkungan Industri Kecil Pemanfaatan Limbah B3 Slag Aluminium Kec. Sumobito dan Kec. Kesamben. Kab. Jombang [Environmental risk assessment/AMDAL small industrial environmental area utilization of aluminum slag B3 waste, Sumobito District and Kesamben District, Jombang Regency]. Jombang: Badan Lingkungan Hidup Kabupaten Jombang.
  • Khadija, D. et al. (2021) “Surface water quality assessment in the semi-arid area by a combination of heavy metal pollution indices and statistical approaches for sustainable management,” Environmental Challenges, 5, 100230. Available at: https://doi.org/10.1016/j.envc.2021.100230.
  • Liu, C.W., Lin, K.H. and Kuo, Y.M. (2003) “Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan,” Science of the Total Environment, 313(1–3), pp. 77–89. Available at: https://doi.org/10.1016/s0048-9697(02)00683-6.
  • Lumb, A., Sharma, T.C. and Bibeault, J.F. (2011) “A review of Genesis and evolution of water quality index (WQI) and some future directions,” Water Quality, Exposure and Health, 3(1), pp. 11–24. Available at: https://doi.org/10.1007/s12403-011-0040-0.
  • Mahapatra, S.R. et al. (2020) “Heavy metal index and geographical information system (GIS) approach to study heavy metal contamination: A case study of north Chennai groundwater,” Applied Water Science, 10(12). Available at: https://doi.org/10.1007/s13201-020-01321-0.
  • Mahinroosta, M. and Allahverdi, A. (2018) “Hazardous aluminium dross characterization and recycling strategies: A critical review,” Journal of Environmental Management, 223, pp. 452–468. Available at: https://doi.org/10.1016/j.jenvman.2018.06.068.
  • Mirzaei, R. and Sakizadeh, M. (2016) “Comparison of interpolation methods for the estimation of groundwater contamination in Andimeshk-Shush Plain, Southwest of Iran,” Environmental Science and Pollution Research, 23(3), pp. 2758–2769. Available at: https://doi.org/10.1007/s11356-015-5507-2.
  • Mohan, S.V., Nithila, P. and Reddy, S.J. (1996) “Estimation of heavy metals in drinking water and development of heavy metal pollution index,” Journal of Environmental Science and Health, 31(2), pp. 283–289. Available at: https://doi.org/10.1080/10934529609376357.
  • Nuzulliyantoro, A.T. et al. (2020) Atlas Ketersediaan Air Tanah Indonesia [Atlas of Indonesian groundwater availability]. Bandung: Badan Geologi.
  • Putranto, T.T. and Alexander, K. (2017) “Aplikasi geospasial menggunakan ArcGIS 10.3 dalam pembuatan peta daya hantar listrik di cekungan airtanah Sumowono [Geospatial application using ArcGIS 10.3 in developing electrical conductivity maps in Sumowono Groundwater Basin],” Jurnal Presipitasi: Media Komunikasi dan Pengembangan Teknik Lingkungan, 14(1), pp. 15–23. Available at: https://doi.org/10.14710/presipitasi.v14i1.15-23.
  • Putranto, T.T. and Ginting, R.S. (2020) “Determining groundwater facies and water quality index in Tanah Bumbu Regency/South Borneo Indonesia,” in B. Warsito, Sudarno and T.T. Putranto (eds.) E3S Web of Conferences, 202, pp. 1–10. Available at: https://doi.org/10.1051/e3sconf/202020204007.
  • Rahman, M.A.T.M.T. et al. (2020) “Heavy metal pollution assessment in the groundwater of the Meghna Ghat industrial area, Bangladesh, by using water pollution indices approach,” Applied Water Science, 10(8). Available at: https://doi.org/10.1007/s13201-020-01266-4.
  • Regulation (2010) Peraturan Menteri Kesehatan No.492/2010 tentang Standar Spesifikasi Air Minum Indonesia [Regulation of the Minister of Health of Republic Indonesia 492/2010 regarding Indonesian standard drinking water specifications]. Available at: www.kemkes.go.id (Accessed: April 10, 2022).
  • Rezaei, A. et al. (2019) “Evaluation of groundwater quality and heavy metal pollution indices in Bazman basin, southeastern Iran,” Groundwater for Sustainable Development, 9, 100245. Available at: https://doi.org/10.1016/j.gsd.2019.100245.
  • Samara, F. et al. (2020) “Is acid treatment of secondary aluminium waste products prior to storage and disposal a viable option?,” Environmental Nanotechnology, Monitoring and Management, 14, 100322. Available at: https://doi.org/10.1016/j.enmm.2020.100322.
  • Santosa, S. and Atmawinata, S. (1992) Peta geologi lembar Kediri, Jawa [Geological map of the Kediri Quadrangle, Jawa]. Bandung: Pusat Penelitian dan Pengembangan Geologi.
  • Setioningrum, R., Sulistyorini, L. and Rahayu, W. (2020) “Gambaran kualitas air bersih kawasan domestik di Jawa Timur pada tahun 2019 [Description of quality of clean water in domestic area in East Java in 2019],” Jurnal Ilmu Kesehatan Masyarakat, 16(2), pp. 87–94. Available at: https://doi.org/10.19184/ikesma.v16i2.19045.
  • Shanmugam, J. and Velappan, E. (2015) “Assessment of water quality index in the St. Thomas Mount block using GIS and remote sensing,” Polish Journal of Environmental Studies, 24(4), pp. 1611–1619. Available at: https://doi.org/10.15244/pjoes/39550.
  • Shen, H. et al. (2021) “Harmless disposal and resource utilization for secondary aluminum dross: A review,” Science of the Total Environment, 760. Available at: https://doi.org/10.1016/j.scito-tenv.2020.143968.
  • Shinzato, M.C. and Hypolito, R. (2016) “Effect of disposal of aluminum recycling waste in soil and water bodies,” Environmental Earth Sciences, 75(7). Available at: https://doi.org/10.1007/s12665-016-5438-3.
  • Silva, M.I. et al. (2021) “Assessment of groundwater quality in a Brazilian semiarid basin using an integration of GIS, water quality index and multivariate statistical techniques,” Journal of Hydrology, 598, 126346. Available at: https://doi.org/10.1016/j.jhydrol.2021.126346.
  • Simpson, G. and Wu, Y.H. (2014) “Accuracy and effort of interpolation and sampling: Can GIS help lower field costs?,” ISPRS International Journal of Geo-Information, 3(4), pp. 1317–1333. Available at: https://doi.org/10.3390/ijgi3041317.
  • Singh, P.K. et al. (2014–2015) “Review of various contamination index approaches to evaluate groundwater quality with geographic information system (GIS),” International Journal of ChemTech Research, 7(4), pp. 1920–1929. Available at: https://sphinxsai.com/2015/ch_vol7_no4/4/(1920-1929)%20V7N4.pdf (Accessed: April 10, 2022).
  • Tavassoli, S. and Mohammadi, F. (2017) “Groundwater quality assessment based on WQI and its vulnerability to saltwater intrusion in a coastal city, Iran,” Journal of Geoscience and Environment Protection, 5(6). Available at: https://doi.org/10.4236/gep.2017.56010.
  • Tiwari, A.K. et al. (2015) “Evaluation of surface water quality by using GIS and a heavy metal pollution index (HPI) model in a coal mining area, India,” Bulletin of Environmental Contamination and Toxicology, 95(3), pp. 304–310. Available at: https://doi.org/10.1007/s00128-015-1558-9.
  • Tsakiridis, P. (2012) “Aluminium salt slag characterization and utilization – A review,” Journal of Hazardous Materials, 217–218, pp. 1–10. Available at: https://doi.org/10.1016/j.jhazmat.2012.03.052.
  • Vasanthavigar, M. et al. (2010) “Application of water quality index for groundwater quality assessment: Thirumanimuttar sub-basin, Tamilnadu, India,” Environmental Monitoring and Assessment, 171(1–4), pp. 595–609. Available at: https://doi.org/10.1007/s10661-009-1302-1.
  • WHO (2011) Guidelines for drinking-water quality. 4th edn. Geneva: World Health Organization.
  • Xiao, J., Jin, Z. and Wang, J. (2014) “Assessment of the hydro-geochemistry and groundwater quality of the Tarim River basin in an extreme arid region, NW China,” Environmental Management, 53(1), pp. 135–146. Available at: https://doi.org/10.1007/s00267-013-0198-2.
  • Xiao, Y., Reuter, M.A. and Boin, U.M.J. (2005) “Aluminium recycling and environmental issues of salt slag treatment,” Journal of Environmental Science and Health, Part A, 40(10), pp. 1861–1875. Available at: https://doi.org/10.1080/10934520500183824.
  • Zakir, H.M. et al. (2020) “Assessment of health risk of heavy metals and water quality indices for irrigation and drinking suitability of waters: A case study of Jamalpur Sadar area, Bangladesh,” Environmental Advances, 2, 100005. Available at: https://doi.org/10.1016/j.envadv.2020.100005.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-44c57542-db4c-4817-9c26-52d6c28e4676
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.