PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Identification of sources and sinks of atmospheric aerosols and their impact on east African rainfall

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Aerosols play a crucial role in climate change by providing a radiation balance between the Earth and atmosphere. In the present study, aerosol sources and sinks have been identified over African region using the Modern-Era Retrospective analysis for Research and Applications, Version 2 reanalysis data from 1985 to 2015. The study mainly focused on climatological and seasonal changes in aerosol distribution and concentrations over African continent and their impact on east African rainfall. Western Africa shows high concentrations of aerosol optical depth (AOD) of greater than 0.3 due to localized pressure changes and diverging winds from the Sahara desert. The highest amount of AOD ( ̴0.8) has been observed in winter season due to strong surface winds and high production of sea salt. When temperature is high in summer season ( ̴306 K), it has been observed that aerosol area distribution increases but their concentration decreases. The highest amount of rainfall ( ̴295 mm) was recorded in the winter season between 1997 and 1998. A strong inverse relationship was observed between aerosol and the east African rainfall. In 2015, the lowest amount of rainfall was observed in the summer season ̴100 mm due to the observed high presence of aerosols. On average, the correlation coefficient between aerosols and precipitation over east Africa has been found to be negative. The increase in rainfall is associated with an increase in relative humidity. However, during the east African monsoon season, the presence of some aerosols cause the development of convective clouds and hence more rainfall.
Słowa kluczowe
Czasopismo
Rocznik
Strony
1335--1346
Opis fizyczny
Bibliogr. 64 poz., rys.
Twórcy
  • Department of Physics, Andhra University, Visakhapatnam, Andhra Pradesh 530003, India
  • Department of Physics, University of Malawi, Zomba, Malawi
  • Department of Meteorology and Oceanography, Andhra University, Visakhapatnam, Andhra Pradesh 530003, India
  • Department of Physics, Andhra University, Visakhapatnam, Andhra Pradesh 530003, India
Bibliografia
  • 1. Ackerman AS, Kirkpatrick MP, Stevens DE et al (2004) The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature 432(7020):1014–1017
  • 2. Allan RP, Liu C, Zahn M et al (2014) Physically consistent responses of the global atmospheric hydrological cycle in models and observations. Surv Geophys 35(3):533–552
  • 3. Allen RJ, Evan AT, Booth BB (2015) Interhemispheric aerosol radiative forcing and tropical precipitation shifts during the late twentieth century. J Clim 28(20):8219–8246
  • 4. Altaratz O, Bar-Or R, Wollner U et al (2013) Relative humidity and its effect on aerosol optical depth in the vicinity of convective clouds. Environ Res Lett 8(3):034025
  • 5. Ambenje P (1990) Mean tropospheric motion field over kenya during the 1984 long rains season (March–May). In: Extended abstracts, Third WMO Symp. on meteorological aspects of tropical droughts with emphasis on long-range forecasting, Niamey, Niger, WMO/TD353
  • 6. Bado N, Ouédraogo A, Guengané H et al (2019) Climatological analysis of aerosols optical properties by airborne sensors and in situ measurements in west Africa: Case of the Sahelian zone. Open J Air Pollut 8(04):118
  • 7. Bollasina MA, Ming Y (2011) Anthropogenic aerosols and the weakening of the south Asian summer monsoon. Science 334(6055):502–505
  • 8. Chang RW, Leck C, Graus M et al (2011) Aerosol composition and sources in the central arctic ocean during ASCOS. Atmos Chem Phys 11(20):10619–10636
  • 9. Cheng F, Zhang J, He J et al (2017) Analysis of aerosol-cloud-precipitation interactions based on MODIS data. Adv Space Res 59(1):63–73
  • 10. Chin M, Diehl T, Dubovik O et al (2009) Light absorption by pollution, dust, and biomass burning aerosols: a global model study and evaluation with aeronet measurements. In: Annales Geophysicae, Copernicus GmbH, pp 3439–3464
  • 11. Choi YS, Ho CH, Kim J et al (2008) The impact of aerosols on the summer rainfall frequency in China. J Appl Meteorol Climatol 47(6):1802–1813
  • 12. Cook J, Highwood E (2004) Climate response to tropospheric absorbing aerosols in an intermediate general-circulation model. Q J R Meteorol Soc 130(596):175–191
  • 13. Dentener F, Kinne S, Bond T et al (2006) Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom. Atmos Chem Phys 6(12):4321–4344
  • 14. Drobinski P, Bastin S, Janicot S et al (2009) On the late northward propagation of the west African monsoon in summer 2006 in the region of Niger/Mali. J Geophys Res Atmos 114(D9)
  • 15. Fan J, Zhang R, Li G et al (2007) Effects of aerosols and relative humidity on cumulus clouds. J Geophys Res Atmos 112(D14)
  • 16. Funk C, Hoell A, Shukla S et al (2016) The east African monsoon system: seasonal climatologies and recent variations. In: The monsoons and climate change. Springer, pp 163–185
  • 17. Gherboudj I, Beegum SN, Ghedira H (2017) Identifying natural dust source regions over the middle-east and north-Africa: estimation of dust emission potential. Earth Sci Rev 165:342–355
  • 18. Greaves C (1881) Relative humidity. Q J R Meteorol Soc 7(38):132–138
  • 19. Hardwick Jones R, Westra S, Sharma A (2010) Observed relationships between extreme sub-daily precipitation, surface temperature, and relative humidity. Geophys Res Lett 37(22)
  • 20. Heinold B, Tegen I, Schepanski K et al (2011) Regional modelling of Saharan dust and biomass-burning smoke: Part i: model description and evaluation. Tellus B Chem Phys Meteorol 63(4):781–799
  • 21. Hua W, Zhou L, Chen H et al (2016) Possible causes of the central equatorial African long-term drought. Environ Res Lett 11(12):124002
  • 22. Huang J, Lin B, Minnis P et al (2006) Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over east Asia. Geophys Res Lett 33(19)
  • 23. Huang J, Wang T, Wang W et al (2014) Climate effects of dust aerosols over east Asian arid and semiarid regions. J Geophys Res Atmos 119(19):11–398
  • 24. Hwang YT, Frierson DM, Kang SM (2013) Anthropogenic sulfate aerosol and the southward shift of tropical precipitation in the late 20th century. Geophys Res Lett 40(11):2845–2850
  • 25. Jiang M, Li Z, Wan B et al (2016) Impact of aerosols on precipitation from deep convective clouds in eastern China. J Geophys Res Atmos 121(16):9607–9620
  • 26. Khain A, Rosenfeld D, Pokrovsky A (2005) Aerosol impact on the dynamics and microphysics of deep convective clouds. Q J R Meteorol Sov J Atmos Sci Appl Meteorol Phys Oceanogr 131(611):2639–2663
  • 27. Khain A, BenMoshe N, Pokrovsky A (2008) Factors determining the impact of aerosols on surface precipitation from clouds: an attempt at classification. J Atmos Sci 65(6):1721–1748
  • 28. Komkoua Mbienda A, Guenang G, Tanessong R et al (2019) Potential effects of aerosols on the diurnal cycle of precipitation over central Africa by regcm4. 4. SN Appl Sci 1(2):1–16
  • 29. Koren I, Altaratz O, Remer LA et al (2012) Aerosol-induced intensification of rain from the tropics to the mid-latitudes. Nat Geosci 5(2):118–122
  • 30. Kvalevåg MM, Samset BH, Myhre G (2013) Hydrological sensitivity to greenhouse gases and aerosols in a global climate model. Geophys Res Lett 40(7):1432–1438
  • 31. Li Cj, Chai Yq, Yang Ls et al (2016) Spatio-temporal distribution of flood disasters and analysis of influencing factors in Africa. Nat Hazards 82(1):721–731
  • 32. Li Z, Lau WM, Ramanathan V et al (2016) Aerosol and monsoon climate interactions over Asia. Rev Geophys 54(4):866–929
  • 33. Liu Y, Huang J, Shi G et al (2011) Aerosol optical properties and radiative effect determined from sky-radiometer over loess plateau of northwest China. Atmos Chem Phys 11(22):11455–11463
  • 34. Macodras M, Nthusi P, Mwikya J (1989) Synoptic features associated with the failure of 1984 long rains in Kenya. Coping Drought Kenya Natl Local Strateg 69:81
  • 35. Middleton N, Goudie A (2001) Saharan dust: sources and trajectories. Trans Inst Br Geogr 26(2):165–181
  • 36. Myhre G, Myhre C, Samset B et al (2013) Aerosols and their relations to global climate and climate sensitivity. Nat Educ Knowl 4(5):7
  • 37. Nicholson SE (2014) A detailed look at the recent drought situation in the greater horn of Africa. J Arid Environ 103:71–79
  • 38. Nicholson SE (2016) An analysis of recent rainfall conditions in eastern Africa. Int J Climatol 36(1):526–532
  • 39. Nicholson SE (2017) Climate and climatic variability of rainfall over eastern Africa. Rev Geophys 55(3):590–635
  • 40. Nicholson SE (2018) The ITCZ and the seasonal cycle over equatorial Africa. Bull Am Meteor Soc 99(2):337–348
  • 41. Prijith S, Aloysius M, Mohan M (2013) Global aerosol source/sink map. Atmos Environ 80:533–539
  • 42. Ramanathan V, Crutzen PJ (2001) Aerosols, climate, and the hydrological cycle. Science 294(5549):2119–2124
  • 43. Rosenfeld D, Lohmann U (2008) Flood or drought: How do aerosols affect precipitation? Science 321(5894):1309–1313
  • 44. Rotstayn LD, Lohmann U (2002) Tropical rainfall trends and the indirect aerosol effect. J Clim 15(15):2103–2116
  • 45. Rowell DP, Booth BB, Nicholson SE et al (2015) Reconciling past and future rainfall trends over east Africa. J Clim 28(24):9768–9788
  • 46. Sanap S, Pandithurai G (2015) The effect of absorbing aerosols on Indian monsoon circulation and rainfall: a review. Atmos Res 164:318–327
  • 47. Scannell C, Booth BB, Dunstone NJ et al (2019) The influence of remote aerosol forcing from industrialized economies on the future evolution of east and west African rainfall. J Clim 32(23):8335–8354
  • 48. Schott FA, Xie SP, McCreary Jr JP (2009) Indian ocean circulation and climate variability. Rev Geophys 47(1)
  • 49. Segele ZT, Lamb PJ, Leslie LM (2009) Large-scale atmospheric circulation and global sea surface temperature associations with horn of Africa June–September rainfall. Int J Climatol J R Meteorol Soc 29(8):1075–1100
  • 50. Shawki D, Voulgarakis A, Chakraborty A et al (2018) The south Asian monsoon response to remote aerosols: global and regional mechanisms. J Geophys Res Atmos 123(20):11–585
  • 51. Shindell D, Kuylenstierna JC, Vignati E et al (2012) Simultaneously mitigating near-term climate change and improving human health and food security. Science 335(6065):183–189
  • 52. Solomon S, Plattner GK, Knutti R et al (2009) Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci 106(6):1704–1709
  • 53. Tao WK, Chen JP, Li Z et al (2012) Impact of aerosols on convective clouds and precipitation. Rev Geophys 50(2)
  • 54. Twomey S (1977) The influence of pollution on the shortwave albedo of clouds. J Atmos Sci 34:1149–1152
  • 55. Varga G (2020) Changing nature of Saharan dust deposition in the Carpathian basin (central Europe): 40 years of identified north African dust events (1979–2018). Environ Int 139(105):712
  • 56. Vigaud N, Lyon B, Giannini A (2017) Sub-seasonal teleconnections between convection over the Indian ocean, the east African long rains and tropical pacific surface temperatures. Int J Climatol 37(3):1167–1180
  • 57. Vinoj V, Rasch PJ, Wang H et al (2014) Short-term modulation of Indian summer monsoon rainfall by west Asian dust. Nat Geosci 7(4):308–313
  • 58. Viste E, Sorteberg A (2013) The effect of moisture transport variability on Ethiopian summer precipitation. Int J Climatol 33(15):3106–3123
  • 59. Wainwright CM, Marsham JH (2019) Eastern African Paradox rainfall decline due to shorter not less intense long rains. npj Clim Atmos Sci 2(1):1–9
  • 60. Wang Y, Wan Q, Meng W et al (2011) Long-term impacts of aerosols on precipitation and lightning over the pearl river delta megacity area in China. Atmos Chem Phys 11(23):12421–12436
  • 61. Wilcox LJ, Highwood EJ, Dunstone NJ (2013) The influence of anthropogenic aerosol on multi-decadal variations of historical global climate. Environ Res Lett 8(2):024033
  • 62. Xie P, Arkin PA (1995) An intercomparison of gauge observations and satellite estimates of monthly precipitation. J Appl Meteorol Climatol 34(5):1143–1160
  • 63. Yu H, Yang Y, Wang H et al (2020) Interannual variability and trends of combustion aerosol and dust in major continental outflows revealed by MODIS retrievals and CAM5 simulations during 2003–2017. Atmos Chem Phys 20(1):139–161
  • 64. Zarei F, Gharaylou M, Alizadeh-Choobari O (2017) Aerosol impact on precipitation under different relative humidities: a case study. Iran J Geophys 11(2):135–155
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-44c27abf-177a-4cb7-9521-c2ebf87bacf3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.