PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Life Cycle Assessment (LCA) of the integrated technology for the phosphorus recovery from sewage sludge ash (SSA) and fertilizers production

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents an application of Life Cycle Assessment (LCA) method for the environmental evaluation of the technologies for the fertilizers production. LCA has been used because it enables the most comprehensive identification, documentation and quantification of the potential impacts on the environment and the evaluation and comparison of all significant environmental aspects. The main objective of the study was to assess and compare two technologies for the production of phosphorus (P) fertilizers coming from primary and secondary sources. In order to calculate the potential environmental impact the IMPACT 2002+ method was used. The first part of the LCA included an inventory of all the materials used and emissions released by the system under investigation. In the following step, the inventory data were analyzed and aggregated in order to calculate one index representing the total environmental burden. In the scenario 1, fertilizers were produced with use of an integrated technology for the phosphorus recovery from sewage sludge ash (SSA) and P fertilizer production. Samples of SSA collected from two Polish mono-incineration plants were evaluated (Scenario 1a and Scenario 1b). In the scenario 2, P-based fertilizer (reference fertilizer – triple superphosphate) was produced from primary sources – phosphate rock. The results of the LCA showed that both processes contribute to a potential environmental impact. The overall results showed that the production process of P-based fertilizer affects the environment primarily through the use of the P raw materials. The specific results showed that the highest impact on the environment was obtained for the Scenario 2 (1.94899 Pt). Scenario 1a and 1b showed the environmental benefits associated with the avoiding of SSA storage and its emissions, reaching -1.3475 Pt and -3.82062 Pt, respectively. Comparing results of LCA of P-based fertilizer production from different waste streams, it was indicated that the better environmental performance was achieved in the scenario 1b, in which SSA had the higher content of P (52.5%) in the precipitate. In this case the lower amount of the energy and materials, including phosphoric acid, was needed for the production of fertilizer, calculated as 1 Mg P2O5. The results of the LCA may play a strategic role for the decision-makers in the aspect of searching and selection of the production and recovery technologies. By the environmental evaluation of different alternatives of P-based fertilizers it is possible to recognize and implement the most sustainable solutions.
Rocznik
Strony
42--52
Opis fizyczny
Bibliogr. 53 poz., rys., tab., wykr.
Twórcy
autor
  • Mineral and Energy Economy Research Institute, Polish Academy of Sciences
  • AGH University of Science and Technology, Poland
  • Mineral and Energy Economy Research Institute, Polish Academy of Sciences
  • Cracow University of Technology, Poland
  • Cracow University of Technology, Poland
Bibliografia
  • 1. Adam, C., Peplinski, B., Michaelis, M., Kley, G. & Simon, F. G. (2009). Thermochemical treatment of sewage sludge ashes for phosphorus recovery, Waste Management, 29(3), pp. 1122-1128.
  • 2. Amann, A., Zoboli, O., Krampe, J., Rechberger, H., Zessner, M. & Egle, L. (2018). Environmental impacts of phosphorus recovery from municipal wastewater, Resources, Conservation and Recycling, 130, pp. 127-139.
  • 3. Bartolozzi, I., Baldereschi, E., Daddi, T. & Iraldo, F. (2018). The application of life cycle assessment (LCA) in municipal solid waste management: A comparative study on street sweeping services, Journal of Cleaner Production, 182, pp. 55-465.
  • 4. Bradford-Hartke, Z., Lane, J., Lant, P. & Leslie, G. (2015). Environmental benefits and burdens of phosphorus recovery from municipal wastewater, Environmental science & technology, 49(14), pp. 8611-8622.
  • 5. Ciesielczuk, T., Rosik-Dulewska, C. & Kusza, G. (2016). Ekstrakcja fosforu z osadów ściekowych i popiołów ze spalania osadów - analiza problemu, Polish Journal for Sustainable Development, 20, 21-28.
  • 6. Ciesielczuk, T., Rosik-Dulewska, C., Poluszyńska, J., Ślęzak, E. & Łuczak, K. (2018). Ashes from Sewage Sludge and Bottom Sediments as a Source of Bioavailable Phosphorus, Journal of Ecological Engineering, 19(4), pp. 88-94.
  • 7. Chojnacka, K., Kowalski, Z., Kulczycka, J., Dmytryk, A., Górecki, H., Ligas, B. & Gramza, M. (2019). Carbon footprint of fertilizer technologies, Journal of Environmental Management, 231, pp. 962-967.
  • 8. Cieślik, B. & Konieczka, P. (2017). A review of phosphorus recovery methods at various steps of wastewater treatment and sewage sludge management. The concept of “no solid waste generation” and analytical methods, Journal of Cleaner Production, 142, pp. 1728-1740.
  • 9. Commission of European Communities. Communication. A strategy for smart, sustainable and inclusive growth Europe 2020 (COM No. 2020, 2010).
  • 10. Commission of European Communities. Communication on the review of the list of critical raw materials for the EU and the implementation of the Raw Materials Initiative. (COM No. 297, 2014).
  • 11. Commission of European Communities. Communication. Towards a circular economy: A zero waste programme for Europe (COM No. 398, 2014).
  • 12. Commission of European Communities. Communication No. 614, 2015. Closing the loop - An EU action plan for the Circular Economy. (COM No. 2015, 614).
  • 13. Commission of European Communities. Communication on the 2017 list of Critical Raw Materials for the EU (COM No. 490, 2017).
  • 14. Commission of European Communities. Consultative Communication on the Sustainable Use of Phosphorus (COM no. 517, 2013).
  • 15. Commission of European Communities. Communication on the Circular Economy Package. Proposal for a Regulation of the European Parliament and of the Council laying down rules on the making available on the market of CE marked fertilizing products and amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 (COM no. 157, 2016).
  • 16. Egle, L., Rechberger, H., Krampe, J. & Zessner, M. (2016). Phosphorus recovery from municipal wastewater: An integrated comparative technological, environmental and economic assessment of P recovery technologies, Science of the Total Environment, 571, 522-542.
  • 17. Egle, L., Rechberger, H. & Zessner, M. (2014a): Phosphorrückgewinnung aus dem Abwasser (Phosphorus recovery from wastewater). Bundesministerium für Land-und Forstwirtschaft, Umwelt und Wasserwirtschaft, Sektion VII Wasser, Vienna, Austria.
  • 18. Egle, L., Rechberger, H. & Zessner, M. (2015). Overview and description of technologies for recovering phosphorus from municipal wastewater, Resources, Conservation and Recycling, 105, pp. 325-346.
  • 19. Egle, L., Zoboli, O., Thaler, S., Rechberger, H. & Zessner, M. (2014b). The Austrian P budget as a basis for resource optimization, Resources, Conservation and Recycling, 83, pp. 152-162.
  • 20. Environmental Protection Agency. (2002). European waste catalogue and hazardous waste list, Environmental Protection Agency (EPA 2002).
  • 21. European Commission - Joint Research Centre, Institute for Environment and Sustainability, (2010). Analysis of existing Environmental Impact Assessment methodologies for use in Life Cycle Assessment, Background document, (ILCD) Handbook-International Reference Life Cycle Data System. First edition, Italy. Publications Office of the European Union (European Commission 2010).
  • 22. European Commission, Joint Research Centre, Institute for Environment and Sustainability (2012). Characterisation factors of the ILCD Recommended Life Cycle Impact Assessment methods. Database and Supporting Information. First edition. February 2012. EUR 25167. Luxembourg. Publications Office of the European Union (European Commission 2012).
  • 23. Goedkoop, M.J., Heijungs, R., Huijbregts, M., De Schryver, A., Struijs, J. & Van Zelm, R. (2009). ReCiPe 2008, A life cycle impact assessment method which comprises harmonized category indicators at the midpoint and the endpoint level. First edition, Report 1 Characterisation. Ministerie van VROM, Den Haag. Netherlands.
  • 24. Feng, W. & Reisner, A. (2011). Factors influencing private and public environmental protection behaviors: Results from a survey of residents in Shaanxi, China, Journal of environmental management, 92(3), pp. 429-436.
  • 25. Fehrenbach, H. & Reinhardt, J. (2011): Ökobilanzielle Bewertung der in der Förderinitiative entwickelten Verfahren (LCA of investigated processes). In: Phosphorrecycling - Ökologische und wirtschaftliche Bewertung verschiedener Verfahren und Entwicklung eines strategischen Verwertungskonzepts für Deutschland (PhoBe) (Recycling of Phosphorus - Ecological and Economic Evaluation of Different Processes and Development of a Strategical Recycling Concept for Germany (PhoBe)), Aachen, Germany. (in German)
  • 26. Gaska, K., Generowicz, A., Zimoch, I., Ciuła, J. & Iwanicka, Z. (2017). A high-performance computing (HPC) based integrated multithreaded model predictive control (MPC) for water supply networks, Architecture Civil Engineering Environment, 10(4), pp. 141-151.
  • 27. Generowicz, A., Kulczycka, J., Kowalski, Z. & Banach, M. (2011). Assessment of waste management technology using BATNEEC options, technology quality method and multi-criteria analysis, Journal of Environmental Management, 92(4), pp. 1314-1320.
  • 28. Gorazda, K., Tarko, B., Wzorek, Z., Kominko, H., Nowak, A. K., Kulczycka, J., Henclik, A & Smol, M. (2017). Fertilisers production from ashes after sewage sludge combustion-A strategy towards sustainable development, Environmental research, 154, pp. 171-180.
  • 29. Heimersson, S., Svanström, M., Laera, G. & Peters, G. (2016). Life cycle inventory practices for major nitrogen, phosphorus and carbon flows in wastewater and sludge management systems, The International Journal of Life Cycle Assessment, 21(8), pp. 1197-1212.
  • 30. Herzel, H., Krüger, O., Hermann, L. & Adam, C. (2016). Sewage sludge ash—a promising secondary phosphorus source for fertilizer production, Science of the Total Environment, 542, pp. 1136-1143.
  • 31. ISO (International Organization for Standardization), 2006a. ISO 14044: Environmental Management e Life Cycle Assessment - Requirements and Guidelines.
  • 32. ISO (International Organization for Standardization), 2006b. ISO 14040: Environmental Management e Life Cycle Assessment - Principles and Framework.
  • 33. Jóźwiakowski, K., Mucha, Z., Generowicz, A., Baran, S., Bielińska, J. & Wójcik, W. (2015). Zastosowanie analizy wielokryterialnej do wyboru rozwiązania technologicznego przydomowej oczyszczalni ścieków zgodnego z ideą zrównoważonego rozwoju, Archives of Environmental Protection, 41(3), pp. 76-82. (in Polish)
  • 34. Kalmykova, Y. & Fedje, K.K. (2013). Phosphorus recovery from municipal solid waste incineration fly ash, Waste Management, 33(6), pp. 1403-1410.
  • 35. Koneczna, R. & Kulczycka, J. (2011). Export Competitiveness of Polish Environmental Products in Select Manufacturing Sectors, Polish Journal of Environmental Studies, 20(6), pp. 1531-1539.
  • 36. Kostecki, M., Janta-Koszuta, K., Stahl, K. & Łozowski, B. (2017). Speciation forms of phosphorus in bottom sediments of three selected anthropogenic reservoirs with different trophy degree, Archives of Environmental Protection, 43(2), pp. 44-50.
  • 37. Kowalski, Z., Generowicz, A. & Makara, A. 2012. Ocena technologii składowania odpadów komunalnych metoda BATNEEC, Przemysł Chemiczny, 91(5), pp. 811-815. (in Polish)
  • 38. Kowalski, Z., Kulczycka, J., Skowron, G. & Sobczak, A. (2007). Comparative evaluation of calcium feed phosphate production methods using Life Cycle Assessment, Archives of Environmental Protection, 33(1), pp. 83-94.
  • 39. Kowalski, Z., Smol, M. & Kulczycka, J. (2018). Kompaktowany (“ciężki”) tripolifosforan sodu, Przemysł Chemiczny, 97(4), pp. 575-578. (in Polish)
  • 40. Krüger, O., Grabner, A. & Adam, C., (2014). Complete survey of German sewage sludge ash, Environmental Science & Technology, 48(20), pp. 11811-11818.
  • 41. Kulczycka, J., Lelek, L., Lewandowska, A. & Zarebska, J. (2015). Life Cycle Assessment of Municipal Solid Waste Management - Comparison of Results Using Different LCA Models, Polish Journal of Environmental Studies, 24(1), pp. 125-140.
  • 42. Łukawska, M. (2014). Analiza specjacyjna fosforu w osadach ściekowych po termicznym spaleniu, Inżynieria i Ochrona Środowiska, 17 (3), pp. 433-439. (in Polish)
  • 43. Makara, A., Smol, M., Kulczycka, J. & Kowalski, Z. (2016). Technological, environmental and economic assessment of sodium tripolyphosphate production - a case study, Journal of Cleaner Production, 133, pp. 243-251.
  • 44. Moghim, S. & Garna, R. K. (2019). Countries’ classification by environmental resilience, Journal of Environmental Management, 230, pp. 345-354.
  • 45. Nakakubo, T., Tokai, A. & Ohno, K. (2012). Comparative assessment of technological systems for recycling sludge and food waste aimed at greenhouse gas emissions reduction and phosphorus recovery, Journal of Cleaner Production, 32, pp. 157-172.
  • 46. Nessi, S., Rigamonti, L. & Grosso, M. (2012). LCA of waste prevention activities: a case study for drinking water in Italy, Journal of Environmental Management, 108, pp. 73-83.
  • 47. Pré Consultants B.V. SimaPro 8.0.4.3 User Manual. 2016.
  • 48. Remy, C. & Jossa, P. (2015). Sustainable Sewage Sludge Management Fostering Phosphorus Recovery and Energy Efficiency. Life Cycle Assessment of Selected Processes for P Recovery from Sewage Sludge, Sludge Liquor or Ash. EU P-REX Project. Report Deliverable D 9.2.
  • 49. Scheidig, K., Mallon, J., Schaaf, M. & Riedl, R. (2013). P-recycling fertilizer from the melt gasification of sewage sludge and sewage sludge ash, KA-Korrespondenz Abwasser, Abfall, 10, 845-850. (in German)
  • 50. Smol, M. (2019). The importance of sustainable phosphorus management in the circular economy (CE) model: the Polish case study, Journal of Material Cycles and Waste Management, 21(2), 227-238.
  • 51. Smol, M., Kulczycka, J., Henclik, A., Gorazda, K. & Wzorek, Z. (2015). The possible use of sewage sludge ash (SSA) in the construction industry as a way towards a circular economy, Journal of Cleaner Production, 95, 45-54.
  • 52. Smol, M., Kulczycka, J. & Kowalski, Z. (2016). Sewage sludge ash (SSA) from large and small incineration plants as a potential source of phosphorus-Polish case study, Journal of environmental management, 184, 617-628.
  • 53. U.S. Geological Survey (2018). Mineral commodity summaries 2018, U.S. Geological Survey, doi.org/10.3133/70194932
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-44c157d2-0d3a-4c1e-b7fb-ff1d4d068e22
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.