PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Symbolic integration with respect to the Haar measure on the unitary groups

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present IntU package for Mathematica computer algebra system. The presented package performs a symbolic integration of polynomial functions over the unitary group with respect to unique normalized Haar measure. We describe a number of special cases which can be used to optimize the calculation speed for some classes of integrals. We also provide some examples of usage of the presented package.
Twórcy
autor
  • Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, 5 Bałtycka Str., 44-100 Gliwice, Poland
  • Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, 5 Bałtycka Str., 44-100 Gliwice, Poland
Bibliografia
  • [1] B. Collins and P. Śniady, “Integration with respect to the Haar measure on unitary, orthogonal and symplectic group”, Commun. Math. Phys. 264, 773-795 (2006).
  • [2] N. Ullah and C. Porter. “Expectation value fluctuations in the unitary ensemble”, Physical Review 132 (2), 948 (1963).
  • [3] D. Weingarten, “Asymptotic behavior of group integrals in the limit of infinite rank”, Journal of Mathematical Physics 19, 999 (1978).
  • [4] Z. Puchała and J. A. Miszczak, “IntU package for Mathematica” (2011). Software available at http://zksi.iitis.pl/wiki/projects:intu.
  • [5] W. Fulton and J. Harris, Representation Theory: A First Course - Graduate Texts in Mathematics vol. 129, Springer Verlag (1991).
  • [6] G. James and A. Kerber, “The representation theory of the symmetric group”, Encyclopaedia of Mathematics, vol .16 (1981).
  • [7] B. Sagan, The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions, Springer Verlag (2001).
  • [8] D. Bernstein, “The computational complexity of rules for the character table of Sn”, Journal of Symbolic Computation 37 (6), 727-748 (2004).
  • [9] F. Hiai and D. Petz, “The semicircle law, free random variables and entropy”, Amer. Mathematical Society 77 (2006).
  • [10] C. Donati-Martin and A. Rouault, “Truncations of Haar unitary matrices, traces and bivariate Brownian bridge”. Arxiv preprint, arXiv:1007.1366 (2010).
  • [11] Z. Puchała, J. A. Miszczak, P. Gawron, C. F. Dunkl, J. A. Holbrook, and K. Życzkowski, “Restricted numerical shadow and the geometry of quantum entanglement”, Journal of Physics A: Mathematical and Theoretical 45 (41), 415309 (2012).
  • [12] J. Miszczak, “Generating and using truly random quantum states in Mathematica”, Comput. Phys. Commun. 183 (1), 118-124 (2012).
  • [13] C. F. Dunkl, P. Gawron, J. A. Holbrook, Z. Puchała, and K. Życzkowski, “Numerical shadows: measures and densities on the numerical range”, Linear Algebra Appl. 434, 2042-2080 (2011).
  • [14] C. F. Dunkl, P. Gawron, J. A. Holbrook, J. A. Miszczak, Z. Puchała, and K. Życzkowski, “Numerical shadow and geometry of quantum states”, J. Phys. A: Math. Theor. 44 (33), 335301 (2011).
  • [15] M. Enríquez, Z. Puchała, and K. Życzkowski, “Minimal Rényi- -Ingarden-Urbanik entropy of multipartite quantum states”, Entropy 17 (7), 5063 (2015).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-44bf602d-b28e-4188-98c8-7c39238e770b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.