Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Allelopathy may be one of the factors affecting the formation of massive and harmful algal blooms in aquatic environments. Recent studies indicate that blooms of cyanobacteria in the Baltic Sea has grown significantly in last decades, so it is important to determine the allelopathic interactions between the dominant species of cyanobacteria and microalgae. In this work we investigated the influence of allelopathic compounds on the growth of Skeletonema marinoi by addition of cell-free filtrate of the Baltic cyanobacterium Nodularia spumigena cultures grown under different temperature (15-25ºC). Additionally the effects of filtrates of both an exponential and a stationary growing culture of N. spumigena were tested on diatom. These studies indicate that high temperature affected the donor species by increasing its production of allelochemicals. The highest drop of growth of analyzed diatom were observed after the addition of cell-free filtrate obtained from N. spumigena grown at 25ºC and constituted 70% of their control. N. spumigena was only allelopathic in exponential growth phase, whereas the cyanobacteria filtrate from stationary phase have any effect on S. marinoi. These findings suggest that N. spumigena may reveal allelopathic activity and that the production of allelopathic substances is influenced by the temperature and growth phase of cyanobacteria.
Allelopatia może być kluczowym czynnikiem wpływającym na tworzenie się masowych zakwitów sinic w wielu wodnych ekosystemach. Badania pokazują, że zakwity sinic w Morzu Bałtyckim w ostatnich dekadach znacznie się nasiliły, dlatego tak ważne jest określenie stopnia oddziaływania allelopatycznego dominujących w tym akwenie gatunków fitoplanktonu. W przeprowadzonych badaniach określono wpływ związków allelopatycznych produkowanych przez bałtycką sinicę Nodularia spumigena hodowaną w różnych temperaturach (15-25ºC) na wzrost okrzemki Skeletonema marinoi. Dodatkowo w niniejszej pracy porównano wpływ przesączu komórkowego uzyskanego z hodowli sinic będących w fazie logarytmicznego i stacjonarnego wzrostu. Badania wykazały, że temperatura modyfikuje allelopatyczne oddziaływania i na przykład najwyższy spadek wzrostu zaobserwowano u S. marinoi po dodaniu przesączu uzyskanego z kultur N. spumigena hodowanych w 25ºC. Wynosił on 70% w stosunku do kontroli. Ponadto w pracy stwierdzono, że N. spumigena wykazywała oddziaływanie allelopatyczne na badaną okrzemkę jedynie wtedy, gdy dodawany przesącz komórkowy pochodził z fazy logarytmicznego wzrostu. Wyniki uzyskane w niniejszej pracy sugerują, że bałtyckie sinice mogą wykazywać oddziaływania allelopatyczne w stosunku do okrzemek a produkcja związków allelopatycznych może być zależna od temperatury oraz fazy wzrostu, w której znajdują się organizmy donorowe.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
103--107
Opis fizyczny
Bibliogr. 46 poz., wykr.
Twórcy
autor
- Laboratory of Marine Plant Ecophysiology, Institute of Oceanography, University of Gdańsk, Av. Piłsudskiego 46, 81378 Gdynia, Poland
autor
- Laboratory of Marine Plant Ecophysiology, Institute of Oceanography, University of Gdańsk, Av. Piłsudskiego 46, 81378 Gdynia, Poland
Bibliografia
- 1. Ame, M.V., M. Diaz, D.A. Wunderline (2003) Occurance of toxic cyanobacterial blooms in San Roque Reservoir (Cordoba, Argentina): a field and chemometric study. Inc. Environ. Toxicol., 18, 192-198
- 2. Chiang, I.Z., W.Y. Huang, J.T. Wu (2004) Allelochemicals of Botryococcus braunii (Chlorophyceae). J Phycol., 40, 474-480
- 3. Fistarol, G.O., C. Legrand, E. Selander, C. Hummert, W. Stolte, E. Granéli (2004b) Allelopathy in Alexandrium spp.: effect on a natural plankton community and on algal monocultures. Aquat Microb Ecol., 35, 45-56
- 4. Fistarol, G.O., C. Legrand, K. Rengefors, E. Granéli (2004a) Temporary cyst formation in phytoplankton: a response to allelopathic competitors? Env Microbiol., 6, 791-798
- 5. Granéli, E., Johansson N. (2003a) Effects of the toxic haptophyte Prymnesium parvum on the survival and feeding of a ciliate: the influence of different nutrient conditions. Mar Ecol Prog Ser., 254, 49-56
- 6. Granéli, E., Johansson N. (2003b) Increase in the production of allelopathic substances by Prymnesium parvum cells grown under N- or P-deficient conditions. Harmful Algae, 2, 135-145
- 7. Griffiths, D.J., Saker M.L. (2003) The Palm island mystery disease 20 years on: a review of research on cyanotoxin cylindrospermopsin. Inc. Environ. Toxicol., 18, 78-93
- 8. Gross E.M. (2003) Allelopathy of Aquatic Autotrophs. Crit Rev Plant Sci., 22, 313-339
- 9. Guillard, R.R.L. (1975) Culture of phytoplankton for feeding marine invertebrates. In: W.L Smith and M.H. Chanley (eds.) Culture of Marine Invertebrate Animals. Plenum Press, New York, USA: 26-60
- 10. Inderjit, K., Dakshini M.M. (1994) Algal Allelopathy. The Botanical Review, 60, 2, 182-196
- 11. Isnansetyo, A., L. Cui, K. Hiramatsu, Y. Kamei (2003) Antibacterial activity of 2,4-diacetylphloroglucinol produced by Pseudomonas sp. AMSN isolated from a marine alga, against vancomycin-resistant Staphylococcus aureus. Int. J. Antimicrob. Agents., 22, 5, 545-547
- 12. Jasser I. (2006) The relationship between autotrophic picoplankton (APP) – the smallest autotrophic component of food web and the trophic status and depth of lakes. Ecohydrol. and Hydrobiol., 6, 1-4, 69-77
- 13. Kahru, M., U. Horstmann, O. Rud (1994) Satellite detection of increased cyanobacterial blooms in the Baltic Sea: natural fluctuation or ecosystem change? Ambio, 23, 469-472
- 14. Kaya, K., A. Mahakhant, L. Keovara (2002) Spiroidesin, a novel lipopeptide from the cyanobacterium Anabaena spiroides that inhibits cell growth of the cyanobacterium Microcystis aeruginosa. J. Nat. Prod., 65, 920-921
- 15. Kearns, K.D., Hunter M.D. (2001) Toxin-producing Anabaena flosaquae induces settling of Chlamydomonas reinhardtii, a competing motile alga. Microb Ecol., 42, 80-86
- 16. Keating K.I. (1977) Allelopathic influence on blue-green bloom sequence in a eutrophic lake. Science, 196, 885-887
- 17. Keating K.I. (1978) Blue-green algal inhibition of diatom growth: transition from mesotrophic to eutrophic community structure. Science, 199, 971-973
- 18. Kundim, B.A., Y. Itou, Y. Sakagami, R. Fudou, T. Iizuka, S. Yamanaka, M.Ojika (2003) New haliangicin isomers, potent antifungal metabolites produced by a marine myxobacterium. J. Antibiot., 56, 7, 630-638
- 19. Lafforgue, M., W. Szeligiewicz, J., Devaux, M. Poulin (1995) Selective mechanisms controlling algal succession in Aydat Lake. Water Sci. and Technol., 32, 117-127
- 20. Lam, C.W.Y., Silvester W.B. (1979) Growth interactions among blue-green (Anabaena oscillarioides, Microcystis aeruginosa) and green (Chlorella sp.) algae. Hydrobiologia, 63, 135-143
- 21. Landsberg J.H. (2002) The effects of harmful algal blooms on aquatic organisms. Rev. Fish Sci., 10, 113-390
- 22. Latała A. (2003) Autecological characteristic of some algal strains from Culture Collection of Baltic Algae (CCBA). In: N. Lima and D. Smith (eds.) Biological Resource Centers and the Use of Microbes. Micoteca da Universidade do Minho, Braga, Portugal, ISBN: 972-97916-3-5, 323-345
- 23. Latała, A., S. Jodłowska, F. Pniewski (2006) Culture Collection of Baltic Algae (CCBA) and characteristic of some strains by factorial experiment approach. Archiv für Hydrobiologie, 165, Algological Studies, 122, 137-154
- 24. Legrand, C., K. Rengefors, G.O. Fistarol, E. Granéli (2003) Allelopathy in phytoplankton - biochemical, ecological and evolutionary aspects. Phycologia, 42, 4, 406-419
- 25. Lehtimaki, J., P. Moisander, K. Sivonen, K. Kononen (1997) Growth, nitrogen fixation and nodularin production by two Baltic Sea cyanobacteria. Appl. Environ. Microbiol., 63, 5, 1647-1654
- 26. Liu, J., M. Van Rijssel, W. Yang, X. Peng, S. Lü, Y. Wang, J. Chen, Z. Wang, Y. Qi (2010) Negative effects of Phaeocystis globosa on microalgae. Chinese Journal of Oceanology and Limnology, 28, 4, 911-916
- 27. MacKintosh, C., K.A. Beattie, S. Klumpp (1990) Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett., 264, 187-192
- 28. Molisch H. (1937) Der Einfluss einer Pflanze auf die andere - Allelopathie.Fischer, Jena
- 29. Noaman, N.H., A. Fattah, M. Khaleafa, S.H. Zaky (2004) Factors affecting antimicrobial activity of Synechococcus leopoliensis. Microbiological Research, 159, 395-402
- 30. Østensvik, O., O.M. Skulberg, B. Underdal, V. Hormazabal (1998) Antibacterial properties of extracts from selected planktonic freshwater cyanobacteria-a comparative study of bacterial bioassays. J. Appl. Microbiol., 84, 1117-1124
- 31. Oufdou, K., N. Mezrioui, B. Oudra, M. Barakate, M. Loudiki (1998) Effect of extracellular and endocellular products from cyanobacterium Synechocystis sp., on the growth of some sanitation system bacteria. Arch. Hydrobiol., 125, 139-148
- 32. Pflugmacher, S. (2002) Possible allelopathic effects of cyanotoxins, with reference to microcystin-LR, in aquatic ecosystems. Environ. Toxicol., 17, 407-413
- 33. Rice E.L. (1979) Allelopathy - an update. Bot. Rev., 45, 15-109
- 34. Shih, S.R., K.N. Tsai, Y.S. Li, C.C. Chueh, E.C. Chan (2003) Inhibition of enterovirus 71- induced apoptosis by allophycocyanin isolated from a blue-green alga Spirulina platensis. J. Med. Virol., 70, 1, 119-125
- 35. Singh, D.P., A. Tyagi, A. Kumar, J.K. Thakur, A. Kumar (2001) Antialgal activity of a hepatotoxin-producing cyanobacterium, Microcystis aeruginosa. World Journal of Microbiology & Biotechnology, 17, 15-22
- 36. Sivonen, K., Jones G. (1999) Cyanobacterial toxins. 3. In: I. Chorus and J. Bartram (eds.) Toxic Cyanobacteria in Water. A Guide to their Public Health Consequences, Monitoring and Management. World Health Organization. E & FN Spon, London: 41-111
- 37. Śliwińska, S., S. Jodłowska, A. Latała (2011) Ekofizjologiczne i allelopatyczne właściwości pikoplanktonowej sinicy Synechococcus sp. Acta Geographica Silesiana, 1 nr specjalny, 63-66
- 38. Smayda T.J. (1997) Harmful algal blooms: their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnology and Oceanography, 42, 5, 1137-1153
- 39. Stal, L.J., P. Albertano, B. Bergman, K. Bröckel, J.R. Gallon, P.K. Hayes, K. Sivonen, A.E. Walsby (2003) BASIC: Baltic Sea cyanobacteria. An investigation of the structure and dynamics of water blooms of cyanobacteria in the Baltic Sea - responses to a changing environment. Cont. Shelf Res., 23, 1695-1714
- 40. Subba Rao, D.V., Y. Pan, S.J. Smith (1995) Allelopathy between Rhizosolenia alata (Brightwell) and the toxigenic Pseudo-nitzschia pungens f. multiseries (Hasle), In: P. Lassus, G. Arzul, E.E. Le Denn, P. Gentien and C. Marcaillou (eds.) Harmful marine algal blooms. Lavoisier Intercept Ltd, Paris: 681-686
- 41. Suikkanen, S., G.O. Fistarol, E. Granéli (2004) Allelopathic effects of the Baltic cyanobacteria Nodularia spumigena, Aphanizomenon flos-aquae and Anabaena lemmermannii on algal monocultures. J Exp Mar Biol Ecol., 308, 85-101
- 42. Suikkanen, S., G.O. Fistarol, E. Granéli (2005) Effects of cyanobacterial allelochemicals on a natural plankton community. Mar Ecol Prog Ser., 287, 1-9
- 43. Suikkanen, S., J. Engström-Öst, J. Jokela, K. Sivonen, M. Viitasalo (2006) Allelopathy of Baltic Sea cyanobacteria: no evidence for the role of nodularin. J of Plankton Research., 28, 6, 543-550
- 44. Turner, J.T., Tester P.A. (1997) Toxic marine phytoplankton, zooplankton grazers, and pelagic food webs. Limnol. Oceanogr., 42, 5, 1203-1214
- 45. Vance B.D. (1965) Composition and succession of cyanophycean water blooms. J. Phycol., 1, 81-86
- 46. Weissbach, A., U. Tillmann, C. Legrand (2010) Allelopathic potential of the dinoflagellate Alexandrium tamarense on marine microbial communities. Harmful Algae, 10, 9-18, doi:10.1016/j.hal.2010.05.007
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-44bd898c-c913-441e-802e-1aa0eeb49edb