Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Nowadays, noise generated by devices is a serious issue in industry and in everyday life, because it may cause health damage to humans. In this research, a cubic rigid device casing built of double-panel thin steel walls is employed to reduce noise emitted from an enclosed noise source. Double-panel structure is used because of good sound insulation it provides. There exist three main groups of noise reduction methods, i.e. passive, semi-active and active. In this paper, a semi-active modification of double-panel structure is applied and examined. The bistable actuator (solenoid) mounted between incident and radiating plates changes its state due to applied constant voltage, causing the coupling of plates. Experimentally measured natural frequencies and modeshapes of the structure are compared to the simulation results. The influence of proposed modification on dynamical properties of the structure is analyzed and discussed.
Wydawca
Czasopismo
Rocznik
Tom
Strony
119--127
Opis fizyczny
Bibliogr. 20 poz., fot., rys., tab., wykr.
Twórcy
autor
- Silesian University of Technology, Institute of Automatic Control, Akademicka 16, 44-100 Gliwice, Poland
autor
- Silesian University of Technology, Institute of Automatic Control, Akademicka 16, 44-100 Gliwice, Poland
autor
- Silesian University of Technology, Institute of Automatic Control, Akademicka 16, 44-100 Gliwice, Poland
autor
- Silesian University of Technology, Institute of Automatic Control, Akademicka 16, 44-100 Gliwice, Poland
autor
- Silesian University of Technology, Institute of Automatic Control, Akademicka 16, 44-100 Gliwice, Poland
Bibliografia
- 1. Alimohammadi I., Ebrahimi H. (2017), Comparison between effects of low and high frequency noise on mental performance, Applied Acoustics, 126: 131-135, doi: 10.1016/j.apacoust.2017.05.021.
- 2. Bao C., Pan J. (1997), Experimental study of different approaches for active control of sound transmission through double walls, The Journal of the Acoustical Society of America, 102 (3): 1664-1670, doi: 10.1121/1.420105.
- 3. Chai G. B. (1993), Free vibration of rectangular isotropic plates with and without a concentrated mass, Computers & Structures, 48 (3): 529-532, doi: 10.1016/0045-7949(93)90331-7.
- 4. Chrapońska A., Wrona S., Rzepecki J., Mazur K., Pawełczyk M. (2019), Active structural acoustic control of an active casing placed in a corner, Applied Sciences, 9 (6): 1059, doi: 10.3390/app9061059.
- 5. Dalaei M., Kerr A. D. (1996), Natural vibration analysis of clamped rectangular orthotropic plates, Journal of Sound and Vibration, 189 (3): 400, doi: 10.1006/jsvi.1996.0026.
- 6. Elliott S. J. (2001), Signal processing for active control, Academic Press, London.
- 7. Gorman D. J. (1982), Free vibration analysis of rectangular plates, Elsevier, New York.
- 8. Kim H. S., Kim S. R., Lee S. H., Seo Y. H, Ma P. S. (2016), Sound transmission loss of double plates with an air cavity between them in a rigid duct, Journal of the Acoustical Society of America, 139 (5): 2324-2333, doi: 10.1121/1.4946987.
- 9. Klanner M., Ellermann K. (2018), Improvement of the wave based method for thick plate vibrations, The International Journal of Acoustics and Vibration, 23 (4): 492-505, doi: 10.20855/ijav.2018.23.41222.
- 10. Leniowska L., Sierżęga M. (2019), Vibration control of a circular plate using parametric controller with phase shift adjustment, Mechatronics, 58: 39-46, doi: 10.1016/j.mechatronics.2019.01.003.
- 11. Ma X., Chen K., Ding S., Yu H. (2016), Physical mechanisms of active control of sound transmission through rib stiffened double-panel structure, Journal of Sound and Vibration, 371: 2-18, doi: 10.1016/j.jsv.2016.02.009.
- 12. Mao Q., Pietrzko S. J. (2013), Control of noise and structural vibration. A Matlab – based approach, Springer, London.
- 13. Mazur K., Pawełczyk M. (2011), Active noise-vibration control using the filteredreference LMS algorithm with compensation of vibrating plate temperature variation, Archives of Acoustics, 36 (1): 65-76.
- 14. Morzyński L., Szczepański G. (2018), Double panel structure for active control of noise transmission, Archives of Acoustics, 43 (4): 689-696, doi: 10.24425/aoa.2018.125162.
- 15. Oliazadeh P., Farshidianfar A., Crocker M. (2019), Study of sound transmission through single-and double-walled plates with absorbing material: Experimental and analytical investigation, Applied Acoustics, 145: 7-24, doi: 10.1016/j.apacoust.2018.09.014.
- 16. Pietrzko S. J., Mao Q. (2008), New results in active and passive control of sound transmission through double wall structures, Aerospace Science and Technology, 12 (1): 42-53, doi: 10.1016/J.AST.2007.10.006.
- 17. Rzepecki J., Chrapońska A., Mazur K., Wrona S., Pawełczyk M. (2019), Semiactive reduction of device casing vibration using a set of piezoelectric elements, Manuscript submitted to 14th Conference on Active Noise and Vibration Control Methods 2019, Kraków-Wieliczka, Poland.
- 18. Sibielak M., Rączka W., Konieczny J., Kowal J. (2015), Optimal control based on a modified quadratic performance index for systems disturbed by sinusoidal signals, Mechanical Systems and Signal Processing, 64-65: 498-519, doi: 10.1016/j.ymssp.2015.03.031.
- 19. Timoshenko S., Woinowski-Krieger W. (1959), Theory of plates and shells, 2nd ed., McGraw-Hill, New York.
- 20. Wrona S., Pawełczyk M. (2018), Feedforward control of double-panel casing for active reduction of device noise, Journal of Low Frequency Noise, Vibration and Active Control, 3-5, doi: 10.1177/1461348418811429.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-44bc5e7c-27ee-48bd-80c9-7813c99af437