PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Green’s function approach to frequency analysis of thin circular plates

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The free vibration analysis of homogeneous and isotropic circular thin plates by using the Green’s functions is considered. The formulae for construction of the influence function for all nodal diameters are presented in a closed form. The limited independent solutions of differential Euler equations were expanded in the Neumann power series using the method of successive approximation. This approach allows to obtain the analytical frequency equations as power series rapidly convergent to exact eigenvalues for different number of nodal diameters. The first ten dimensionless frequencies for eight different natural modes of circular plates are calculated. A part of obtained results have not been presented yet in open literature for thin circular plates. The results of investigation are in good agreement with selected results obtained by other methods presented in literature.
Rocznik
Strony
181--188
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
autor
  • Faculty of Management, Bialystok University of Technology, 2 Ojca Stefana Tarasiuka St., 16-001 Kleosin, Poland
Bibliografia
  • [1] A.W. Leissa, Vibration of Plates, National Aeronautics and Space Administration, Washington, 1969.
  • [2] H.F. Bauer and W. Eidel, “Determination of the lower natural frequencies of circular plates with mixed boundary conditions”, J. Sound and Vibration 292, 742-764 (2006).
  • [3] S. Chakraverty and M. Petyt, “Natural frequencies for free vibration of nonhomogeneous elliptic and circular plates using two-dimensional orthogonal polynomials”, Applied Mathematical Modelling 21 (7), 399-417 (1997).
  • [4] R.B. Bhat, S. Chakraverty, and I. Stiharu, “Recurrence scheme for the generation of two-dimensional boundary characteristic orthogonal polynomials to study vibration of plates”, J. Sound and Vibration 216 (2), 321-327 (1998).
  • [5] T.Y. Wu and G.R. Liu, “Free vibration analysis of circular plates with variable thickness by the generalized differential quadrature rule”, Int. J. Solids and Structures 38, 7967-7980 (2001).
  • [6] T.Y. Wu, Y.Y. Wang, and G.R. Liu, “Free vibration analysis of circular plates using generalized differential quadrature rule”, Computer Methods in Applied Mechanics and Engineering 191, 5365-5380 (2002).
  • [7] J. Jaroszewicz and L. Zoryj, “The method of partial discretization in free vibration problems of circular plates with variable distribution of parameters”, Int. Applied Mechanics 42 (3), 364-373 (2006).
  • [8] F. Ebrahimi and A. Rastgo, “An analytical study on the free vibration of smart circular thin FGM plate based on classical plate theory”, Thin-Walled Structures 46 (12), 1402-1408 (2008).
  • [9] H.S. Yalcin, A. Arikoglu, and I. Ozkol, “Free vibration analysis of circular plates by differential transformation method”, Applied Mathematics and Computation 212, 377-386 (2009).
  • [10] Z.H. Zhou, K.W. Wong, X.S. Xu, and A.Y.T. Leung, “Natural vibration of circular and annular thin plates by Hamiltonian approach”, J. Sound and Vibration 330, 1005-1017 (2011).
  • [11] S. Kukla and M. Szewczyk, “Frequency analysis of annular plates with elastic concentric supports by Green’s function method”, J. Sound and Vibration 300, 387-393 (2007).
  • [12] S.V. Sorokin and N. Peake, “Vibrations of sandwich plates with concentrated masses and spring - like inclusions”, J. Sound and Vibration 237 (2), 203-222 (2000).
  • [13] S. Kukla, Green’s Functions and Their Properties, Czestochowa University of Technology, Czestochowa, 2009.
  • [14] J. Jaroszewicz and L. Zoryj, Methods of Free Axisymmetric Vibration Analysis of Circular Plates Using by Influence Functions, Bialystok University of Technology, Bialystok, 2005.
  • [15] S. Azimi, “Free vibration of circular plates with elastic edge supports using receptance method”, J. Sound and Vibration 120, 37-52 (1988).
  • [16] G. Duan, X. Wang, and Ch. Jin, “Free vibration analysis of circular thin plates with stepped thickness by the DSC element method”, Thin-Walled Structures 85, 25-33 (2014).
  • [17] F.G. Tricomi, Integral Equations, Dover Publications, New York, 1985.
  • [18] Y.V. Shestopalov and Y.G. Smirnov, Integral Equations, Karlstad University, Karlstad, 2002.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-44bb2406-cfd8-4ddd-b721-1441b8e717d4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.