PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of long term low water level in the mountain river catchments area

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Changing atmospheric conditions, including above all the deepening extreme weather phenomena, are increasing from year to year. This, in consequence, causes an increase in the incidence of low outflows. The study compares low water levels for two catchments: Biała Woda and Czarna Woda, and phosphorus and nitrogen load using the Nutrient Delivery Ratio (NDR) model in InVEST software. The objective of the NDR is to map nutrient sources from catchment area and transfer to the river bed. The nutrient loads (nitrogen and phosphorus) spread across the landscape are determined based on a land use (LULC) map and associated loading rates described in literature. The studies have shown that low water levels have been more common recently and pose the greatest threat to the biological life in the aquatic ecosystems. The structure of land use is also of great importance, with a significant impact on the runoff and nitrogen and phosphorus load. Phosphorus and runoff from surface sources to the water of Biała Woda and Czarna Woda catchments area has been reduced in forested areas. Only higher run-offs are observed in the residential buildings zone. The nitrogen load was also greater in the lower (estuary) parts of both catchments, where residential buildings dominate.
Wydawca
Rocznik
Tom
Strony
225--232
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
  • AGH University of Science and Technology, Faculty of Mining Surveying and Environmental Engineering, Mickiewicza 30, 30-059, Kraków, Poland
  • AGH University of Science and Technology, Faculty of Mining Surveying and Environmental Engineering, Mickiewicza 30, 30-059, Kraków, Poland
autor
  • Polytechnic Institute of Tomar, Departamento Arqueologia, Conservação e Restauro e Património, Portugal
autor
  • AGH University of Science and Technology, Faculty of Mining Surveying and Environmental Engineering, Mickiewicza 30, 30-059, Kraków, Poland
autor
  • Polytechnic Institute of Tomar, School of Technology, Portugal
  • Institute of Technology and Life Sciences – National Research Institute, Falenty, Hrabska Av. 3, 09-090 Raszyn, Poland
  • Institute of Technology and Life Sciences – National Research Institute, Falenty, Hrabska Av. 3, 09-090 Raszyn, Poland
Bibliografia
  • BAILEY A. S. HORNBECK J.W., CAMPBELL J.L., EAGAR C. 2003. Hydro-meteorological database for Hubbard Brook Experimental Forest, 1955–2000. General Technical Report NE-305. Delaware, OH. US Department of Agriculture, Forest Service, Northeastern Research Station. DOI 10.2737/NE-GTR-305.
  • BAJKIEWICZ-GRABOWSKA E., MIKULSKI Z. 2008. Hydrologia ogólna [General hydrology]. Warszawa. PWN. ISBN 978-83-01-14579-8 pp. 313.
  • BOIX-FAYOS C., BOERBOOM, L.G.J., JANSSEN R., MARTÍNEZ-MENA M., ALMAGRO M., PÉRE -CUTILLAS P., EEKHOUT J.P.C., CASTILLO V., DE VENTE J. 2020. Mountain ecosystem services affected by land use changes and hydrological control works in Mediterranean catchments. Ecosystem Services. Vol. 44, 101136. DOI 10.1016/j.ecoser.2020.101136.
  • BOND N. 2018. Hydrostats: Hydrologic indices for daily time series data. R package version 0.2.6 [online]. [Access 31.08.2021]. Available at: https://CRAN.R-project.org/package=hydrostats
  • BORMANN F.H., LIKENS G.E. 2012. Pattern and process in a forested ecosystem: disturbance, development and the steady state based on the Hubbard Brook ecosystem study. Springer Science & Business Media. ISBN 1461262321 pp. 272.
  • BREUER L., VACHÉ K.B., JULICH S., FREDE H.G. 2008. Current concepts In nitrogen dynamics for mesoscale catchments. Hydrological Sciences Journal. Vol. 53 p. 1059–1074. DOI 10.1623/hysj.53.5.1059.
  • BURTON T.M., LIKENS G.E. 1975. Energy flow and nutrient cycling In salamander populations in the Hubbard Brook Experimental Forest, New Hampshire. Ecology. Vol. 56(5) p. 1068–1080. DOI 10.2307/1936147.
  • BYCZKOWSKI A. 1996. Hydrologia [Hydrology]. T. 2. Warszawa. SGGW. ISBN 83-7244-069-7 pp. 356.
  • CARPENTER S.R., MOONEY H.A., AGARD J., CAPISTRANO D., DE FRIES R.S., DÍAZ S., ..., WHYTE A. 2009. Science for managing ecosystem services: Beyond the Millennium Ecosystem Assessment. PNAS. Vol. 106(5) p. 1305–1312. DOI 10.1073/pnas.0808772106.
  • DYNOWSKA I. 1971. Typy reżimów rzecznych w Polsce [Types of river regimes in Poland]. Zeszyty Naukowe Uniwersytetu Jagiellońskiego. Prace Geograficzne. Z. 28 p. 67–81.
  • EGAN P.U., PRICE M.U. (eds.) 2017. Mountain ecosystem services and climate change: A global overview of potential threats and strategies for adaptation [online]. Paris. UNESCO. ISBN 978-92-3-100225-0 pp. 32. [Access 10.09.2021]. Available at: https://unesdoc.unesco.org/ark:/48223/pf0000248768news/climate-change-impacts-major-mountainous-regions-world-0
  • ENDRENY T.A., WOOD E.F. 2003. Watershed weighting of export coefficients to map critical phosphorous loading areas. Journal of the American Water Resources Association. Vol. 39(1) p. 165–181. DOI 10.1111/j.1752-1688.2003.tb01569.x.
  • FIGUŁA K. 1966. Kształtowanie się odpływów w zlewniach potoków Biała i Czarna Woda. Badania nad gospodarką wodną zlewni górskich zalesionych i niezalesionych [Formation of outflows in the catchments of the Biała and Czarna Woda streams. Research on water management in forested and non-forested mountaincatchments]. Cz. 2. Roczniki Nauk Rolniczych. Ser. D. T. 118 p. 51–90.
  • GAGLIO M., ASCHONITIS V., PIERETTI L., SANTOS L., GISSI E., CASTALDELLI G., FANO E. A. 2019. Modelling past, present and future Ecosystem Services supply in a protected floodplain under land use and climate changes. Ecological Modelling. DOI 10.1016/j.ecolmodel.2019.04.019.
  • HAMEL P., CHAPLIN-KRAMER R., SIM S., MUELLER C. 2015. A new approach to modeling the sediment retention service (InVEST 3.0): Case study of the Cape Fear catchment, North Carolina, USA. Science of The Total Environment. Vol. 524–525 p. 166–177. DOI 10.1016/j.scitotenv.2015.04.027.
  • HAMEL P., GUSWA A. J. 2015. Uncertainty analysis of the InVEST 3.0 Nutrient Model: Case study of the Cape Fear Catchment, NC. Hydrology and Earth System Sciences Discussion. Vol. 11 p. 11001–11036. DOI 10.5194/hessd-11-11001-2014.
  • HAN B., REIDY A., LI A. 2021. Modeling nutrient release with compiled data in a typical Midwest watershed. Ecological Indicators. Vol. 121, 107213. DOI 10.1016/j.ecolind.2020.107213.
  • HARMEL D., POTTER S., CASEBOLT P., RECKHOW K. 2006. Compilation of measured nutrient load data for agricultural land uses in the United States. Journal of the American Water Resources Association. Vol. 42(5), 05084 p. 1163–1178. DOI 10.1111/j.1752-1688.2006.tb05292.x
  • KALICKI T., PRZEPIÓRA P., KUSZTAL P., CHRABĄSZCZ M., FULARCZYK K., KŁUSAKIEWICZ E., FRĄCZEK M. 2020. Historical and present-day human impact on fluvial systems in the Old-Polish Industrial District (Poland). Geomorphology. Vol. 357. DOI 10.1016/j.geomorph.2020.107062.
  • KISTNER I., OLLESCH G., MEISSNER R., RODE M. 2013. Spatial-temporal dynamics of water soluble phosphorus in the topsoil of a low mountain range catchment. Agriculture, Ecosystems and Environment. Vol. 176 p. 24–38. DOI 10.1016/j.agee.2013.05.01.
  • KOSMOWSKA A., ŻELAZNY M., MAŁEK S., SIWEK J. P., JELONKIEWICZ Ł. 2016. Effect of deforestation on stream water chemistry in the Skrzyczne massif (the Beskid Śląski Mountains in southern Poland). Science of The Total Environment. Vol. 568 p. 1044–1053. DOI 10.1016/j.scitotenv.2016.06.123.
  • KOSTUCH M. 2003. Odpływy podziemne niskie w potokach górskich [Groundwater and low runoffs in mountain sterams]. Woda-Środowisko-Obszary Wiejskie. T. 3. Z. 1(7) p. 193–203.
  • KUREK S., PAWLIK-DOBROWOLSKI J. 1990. Określenie zmian odpływu w zróżnicowanych warunkach środowiska przyrodniczego małych zlewni w dorzeczu górnego Grajcarka (Doniesienie naukowe) [Determination of changes of falls in different conditions of natural environment the small drainages in drainage area of upper Grajcarek (Scientific report)]. Problemy Zagospodarowania Ziem Górskich. Z. 29 p. 135–141.
  • LEHNER B., LIERMANN C.R., REVENG C., VÖRÖSMARTY C., FEKETE B., CROUZET P., ..., WISSER D. 2011. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Frontiers in Ecology and the Environment. Vol. 9 p. 494–502. DOI.org/10.1890/100125.
  • LLENA M., VERICAT D., CAVALLI M., CREMA S., SMITH M.W. 2019. The effects of land use and topographic changes on sedyment connectivity in mountain catchments. Science of the Total Environment. Vol. 660 p. 899–912. DOI 10.1016/j.scitotenv.2018.12.479.
  • MAAVARA T., CHEN Q., VAN METER K., BROWN L.E., ZHANG J., NI J., ZARFL C. 2020. River dam impacts on biogeochemical cycling. Nature Reviews Earth and Environment. Vol. 1(2) p. 103–116. DOI 10.1038/s43017-019-0019-0.
  • MUHAMMED H.H., MUSTAFA A.M., KOLERSKI T. 2021. Hydrological responses to large-scale changes in land cover of river watershed: Review. Journal of Water and Land Development. No. 50 p. 108–121. DOI 10.24425/jwld.2021.138166.
  • OZGA-ZIELIŃSKA M. 1990. Niżówki i wezbrania – ich definiowanie i modelowanie [Low flows and raised waters – their characteristics and modeling]. Przegląd Geofizyczny. R. 35. Z. 1–2 p. 33–43.
  • OZGA-ZIELIŃSKA M., BRZEZIŃSKI J. 1997. Hydrologia stosowana [Applied hydrology]. Warszawa. PWN. ISBN 8301121947 pp. 324.
  • POWERS J.S., MARÍN-SPIOTTA E. 2017. Ecosystem processes and biogeochemical cycles in secondary tropical forest succession. Annual Review of Ecology, Evolution, and Systematics. Vol. 48p. 497–519.
  • R Core Team 2018. The R Project for Statistical Computing. [online]. Vienna, Austria. R Foundation for Statistical Computing. [Access 10.9.2021]. Available at: https://www.R-project.org/
  • SALLUSTIO L., DE TONI A., STROLLO A., DI FEBBRARO M., GISSI E., CASELLA L., GENELETTI D., MUNAFÒ M., VIZZARRI M., MARCHETTI M. 2017. Assessing habitat quality in relation to the spatial distribution of protected areas in Italy. Journal of Environmental Management. DOI 10.1016/j.jenvman.2017.06.031.
  • SHOOK K. 2016. CRHMr: pre- and post- processing for the Cold Regions Hydrological Modelling (CRHM) platform [online]. [Access 10.9.2021]. Available at: https://github.com/CentreFor-Hydrology/CRHMr
  • Stanford University undated. Natural Capital Project. Invest [online]. [Access 10.10.2021]. Available at: https://naturalcapital project.stanford.edu/software/invest
  • SZALIŃSKA E., DOMINIK J. 2006. Water quality changes in the Upper Dunajec Watershed, Southern Poland. Polish Journal of Environmental Studies. Vol. 15(2) p. 327–334.
  • TALLIS H., RICKETTS T.H., DAILY G.C., POLASKY S. 2011. Natural capital: theory and practice of mapping ecosystem services. Oxford University Press. ISBN 9780199588992 pp. 432. DOI 10.1093/acprof:oso/9780199588992.001.0001.
  • TWARDY S., KOPACZ M., JAGUŚ A. 2002. Charakterystyka przyrodnicza zlewni Grajcarka ze szczególnym uwzględnieniem środowiska wodnego i użytkowania terenu [Natural characteristics of the Grajcarka catchment with particular emphasis on the water environment and land use]. Kraków–Falenty. Wydaw. IMUZ. ISBN 83-88763-14-8 pp. 88.
  • WICKHAM H. 2017. Tidyverse: Easily install and load the ‘Tidyverse’. R package version 1.2.1 [online]. [Access 10.10.2021]. Available at: https://CRAN.R-project.org/package=tidyverse
  • WINBOURNE J.B., FENG A., REYNOLD L., PIOTTO D., HASTINGS M.G., PORDER S. 2018. Nitrogen cycling during secondary succession in Atlantic Forest of Bahia, Brazil. Scientific Reports. Vol. 8(1) p. 1–9.
  • YERDELEN C., ASIKOGLU Ö.L., ABDELKADER M., ERIS E. 2021. Estimation of standard duration maximum rainfall by using regression models. Journal of Water and Land Development. No. 50 p. 281–288. DOI 10.24425/jwld.2021.138184.
  • ZHANG L., HICKEL K., DAWES W.R., CHIEW F.H.S., WESTERN A.W., BRIGGS P.R. 2021. 2.2. 5 NDR: Nutrient Delivery Ratio. InVEST pp. 113.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-44ada2fe-5e5b-4e1f-86d2-734ba5d90bed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.