PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A method for the interpretation of sonar data recorded during autonomous underwater vehicle missions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Image acquisition from autonomous underwater vehicles (AUVs) is useful for mapping objects on the seabed. However, there are few studies on the interpretation of data collected with side-scan sonar during autonomous underwater vehicle missions. By recording the seabed with 3D multibeam sonar, a large number of survey points can be obtained. The collected data are processed using applications based on remote sensing image processing. The data collected during AUV missions (or other sonar carriers) needs to be pre-processed to reach the proper effectiveness level. This process includes corrections of signal amplification (Time Varying Gain, or TVG) and geometric distortions of sonar images (Slant Range Corrections). It should be mentioned that, when carrying out the interpretation process for structures on the sea floor, sonar users need to understand the process of visualising seabed projections and depressions, as well as the resolution limitations of the sonar sensors.
Rocznik
Tom
Strony
176--186
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Air Force of Technology Warsaw Poland
  • Warsaw University of Technology Warsaw Poland
  • Military University of Aviation Dęblin Poland
  • MCM Squadron Gdansk Poland
Bibliografia
  • 1. P. Smith Menandro and A. Cardoso Bastos, “Seabed Mapping: A Brief History from Meaningful Words”, Geosciences, vol. 10, no. 7, Art. no. 7, Jul. 2020, doi: 10.3390/geosciences10070273.
  • 2. T. Kogut and K. Bakuła, “Improvement of Full Waveform Airborne Laser Bathymetry Data Processing based on Waves of Neighbourhood Points”, Remote Sens., vol. 11, no. 10, Art. no. 10, Jan. 2019, doi: 10.3390/rs11101255.
  • 3. M. Żokowski, M. Chodnicki, P. Krogulec, and N. Sigiel, “Procedures concerning preparations of autonomous underwater systems to operation focused on detection, classification and identification of mine like objects and ammunition”, J. KONBiN, vol. 48, pp. 149–168, Dec. 2018, doi: 10.2478/jok-2018-0051.
  • 4. S. Sivčev, J. Coleman, E. Omerdić, G. Dooly, and D. Toal, “Underwater manipulators: A review”, Ocean, Eng., vol. 163, pp. 431–450, Sep. 2018, doi: 10.1016/j.oceaneng.2018.06.018.
  • 5. C. Roman and R. Mather, “Autonomous Underwater Vehicles as Tools for Deep-Submergence Archaeology”, Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ., vol. 224, no. 4, pp. 327–340, Nov. 2010, doi: 10.1243/14750902JEME202.
  • 6. L. A. Gonzalez, “Design, Modelling and Control of an Autonomous Underwater Vehicle”, Bachelor of Engineering Honours Thesis 2004, The University of Western Australia, 2004.
  • 7. Y. Ji, S. Kwak, A. Yamashita, and H. Asama, “Acoustic camera-based 3D measurement of underwater objects through automated extraction and association of feature points”, IEEE Int. Conf. Multisens. Fusion Integr. Intell. Syst., vol. 0, pp. 224–230, 2016, doi: 10.1109/MFI.2016.7849493.
  • 8. W. Kazimierski and G. Zaniewicz, “Determination of Process Noise for Underwater Target Tracking with Forward Looking Sonar”, Remote Sens., vol. 13, no. 5, Art. no. 5, Jan. 2021, doi: 10.3390/rs13051014.
  • 9. T. Zhang, S. Liu, X. He, H. Huang, and K. Hao, “Underwater Target Tracking Using Forward-Looking Sonar for Autonomous Underwater Vehicles”, Sensors, vol. 20, no. 1, p. 102, Dec. 2019, doi: 10.3390/s20010102.
  • 10. O. Y. Sergiyenko and V. V. Tyrsa, “3D Optical Machine Vision Sensors with Intelligent Data Management for Robotic Swarm Navigation Improvement”, IEEE Sens. J., vol. 21, no. 10, Art. no. 10, 2021, doi: 10.1109/JSEN.2020.3007856.
  • 11. K. Bikonis, M. Moszyński, and Z. Łubniewski, “Application of Shape From Shading Technique for Side Scan Sonar Images”, Pol. Marit. Res., vol. 20, pp. 39–44, 2013, doi: 10.2478/ pomr-2013-0033.
  • 12. G. Grelowska, E. Kozaczka, and W. Szymczak, “Acoustic Imaging of Selected Areas of Gdansk Bay with the Aid of Parametric Echosounder and Side-Scan Sonar”, Pol. Marit. Res., vol. 24, no. 4, pp. 35–41, Dec. 2017, doi: 10.1515/ pomr-2017-0133.
  • 13. J. M. Topple and J. A. Fawcett, “MiNet: Efficient Deep Learning Automatic Target Recognition for Small Autonomous Vehicles”, IEEE Geosci. Remote Sens. Lett., vol. 18, no. 6, pp. 1014–1018, Jun. 2021, doi: 10.1109/LGRS.2020.2993652.
  • 14. H. Yu, Z. Li, D. Li, and T. Shen, “Bottom Detection Method of Side-Scan Sonar Image for AUV Missions”, Complexity, vol. 2020, pp. 1–9, Oct. 2020, doi: 10.1155/2020/8890410.
  • 15. X. Zhang, C. Tan, and W. Ying, “An Imaging Algorithm for Multireceiver Synthetic Aperture Sonar”, Remote Sens., vol. 11, no. 6, Art. no. 6, Jan. 2019, doi: 10.3390/rs11060672.
  • 16. W. Chen, L. Wang, Y. Zhang, X. Li, J. Liu, and W. Wang, “Anti-disturbance grabbing of underwater robot based on retinex image enhancement”, Chinese Automation Congress (CAC), Nov. 2019, pp. 2157–2162. doi: 10.1109/ CAC48633.2019.8997332.
  • 17. X. Wang, Q. Li, J. Yin, X. Han, and W. Hao, “An Adaptive De-noising and Detection Approach for Underwater Sonar Image”, Remote Sens., vol. 11, no. 4, Art. no. 4, Jan. 2019, doi: 10.3390/rs11040396.
  • 18. J. C. Isaacs, “Sonar automatic target recognition for underwater UXO remediation,” in 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Jun. 2015, pp. 134–140. doi: 10.1109/CVPRW.2015.7301307.
  • 19. A. Waite, Sonar for Practising Engineers, 3 rd. Wiley: Hoboken, NJ, USA, 2002. Accessed: Jun. 15, 2021. [Online].Available: https://www.wiley.com/en-us/ Sonar+for+Practising+Engi neers%2C +3rd+Edition-p-9780471497509.
  • 20. R. Heremans, Y. Dupont, and M. Acheroy, “Motion Compensation in High Resolution Synthetic Aperture Sonar (SAS) Images”. IntechOpen, 2009. doi: 10.5772/39408.
  • 21. F. Florin, F. Fohanno, I. Quidu, and J. Malkasse, “Synthetic Aperture and 3D Imaging for Mine Hunting Sonar”, Engineering, 2004, Accessed: Jun. 11, 2021. [Online]. Available: /paper/Synthetic-Aperture-and-3D-Imaging-for-Mine-Hunting-Florin-Fohanno/0cff43ea7dc424e21b9ed83d 256a2e25eda4a312
  • 22. M. Zieja, M. Ważny, and S. Stępień, “Outline of a method for estimating the durability of components or device assemblies while maintaining the required reliability level”, Eksploat. Niezawodn. - Maint. Reliab., vol. 20, no. 2, 2018, doi: 10.17531/ ein.2018.2.11.
  • 23. D. T. Cobra, A. V. Oppenheim, and J. S. Jaffe, “Geometric distortions in Side-Scan Sonar images: A Procedure for their estimation and correction”, J. Ocean. Eng., vol. 17, no. 3, 1992.
  • 24. M. Machado, P. Drews-Jr, P. Núñez, and S. Botelho, “Semantic Mapping on Underwater Environment Using Sonar Data”. 2016. doi: 10.1109/LARS-SBR.2016.48.
  • 25. P. Blondel, The Handbook of Sidescan Sonar. Berlin Heidelberg: Springer-Verlag, 2009. doi: 10.1007/978-3-540-49886-5.
  • 26. K. H. Talib, M. Y. Othman, S. A. H. Sulaiman, M. A. M. Wazir, and A. Azizan, “Determination of speed of sound using empirical equations and SVP”, in 2011 IEEE 7th International Colloquium on Signal Processing and its Applications, 2011, pp. 252–256.
  • 27. R. J. Urick, Principles of Underwater Sound, 3rd ed. Peninsula Pub, 1996. Accessed: Jun. 03, 2021. [Online]. Available: https://www.abebooks.com/9780932146625/ Principles-Underwater-Sound-3rd-Edition-0932146627/plp
  • 28. X. Shang, J. Zhao, and H. Zhang, “Automatic Overlapping Area Determination and Segmentation for Multiple Side Scan Sonar Images Mosaic”, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 14, pp. 2886–2900, 2021, doi: 10.1109/ JSTARS.2021.3061747.
  • 29. J. Tęgowski and A. Zielinski, “Synthesis And Wavelet Analysis Of Side-Scan Sonar Sea Bottom Imagery”, Hydroacoustics, vol. 9, 2006.
  • 30. A. K. Mishra and B. Mulgrew, “Automatic target recognition” in Encyclopedia of Aerospace Engineering, R. Blockley and W. Shyy, Eds. Chichester, UK: John Wiley & Sons, Ltd, 2010, p. eae281. doi: 10.1002/9780470686652.eae281.
  • 31. T. Praczyk, “Correction of Navigational Information Supplied to Biomimetic Autonomous Underwater Vehicle”, Pol. Marit. Res., vol. 25, no. 1, pp. 13–23, Mar. 2018, doi: 10.2478/ pomr-2018-0002.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-44a9cdaa-a365-4d84-86db-8f363c3f3f63
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.