PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Effect of water-cement ratio on the electromagnetic shielding performance of C3S paste cured long-term

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper investigated the electromagnetic shielding properties and the mechanisms of tricalcium silicate (C3S) paste with three water-cement (W/C) ratios after long-term curing. The C3S pastes with three W/C ratios were tested by XRD and other tests for the qualitative and quantitative analysis of the individual phases. The electromagnetic shielding properties and electromagnetic parameters of the specimens were obtained using the waveguide method. Finally, the microscopic mechanism of the variation of electromagnetic shielding properties of C3S paste affected by the W/C ratio was dissected based on the individual phases. The results show that the volume fraction of pore, calcium silicate hydrate (C-S-H) gel, calcium hydroxide (CH), and calcite (CaCO3) in the specimen increases with the rise of the W/C ratio, and the unhydrated C3S decreases; the electromagnetic shielding of the paste specimen increases; the complex relative permittivity gradually increases. The mechanism of the W/C ratio affecting the electromagnetic shielding performance of C3S paste is that, on the one hand, both the volume fraction of C-S-H and the relative permittivity in the solid phase, which have the greatest influence on the electromagnetic shielding performance, gradually increase with the increase of W/C ratio. On the other hand, as the W/C ratio increases, the volume fraction and area fraction of the mesopores in the specimen increase, which increases the internal loss of electromagnetic waves.
Rocznik
Strony
art. no. e83, 2023
Opis fizyczny
Bibliogr. 59 poz., rys., tab., wykr.
Twórcy
autor
  • Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing Key Laboratory of Earthquake Engineering and Structural Retroft, Beijing University of Technology, Beijing 100124, China
autor
  • Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing Key Laboratory of Earthquake Engineering and Structural Retroft, Beijing University of Technology, Beijing 100124, China
autor
  • Faculty of Science, Beijing University of Technology, Beijing 100124, China
autor
  • Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing Key Laboratory of Earthquake Engineering and Structural Retroft, Beijing University of Technology, Beijing 100124, China
Bibliografia
  • 1. Guan H, Liu S, Duan Y, Cheng J. Cement based electromagnetic shielding and absorbing building materials. Cem Concr Compos. 2006;28(5):468-74.
  • 2. Wanasinghe D, Aslani F, Ma G, Habibi D. Advancements in electromagnetic interference shielding cementitious composites. Constr Build Mater. 2020;231:117116.
  • 3. Ozturk M, Karaaslan M, Akgol O, Sevim UK. Mechanical and electromagnetic performance of cement based composites containing different replacement levels of ground granulated blast furnace slag, fly ash, silica fume and rice husk ash. Cem Concr Res. 2020;136:106177.
  • 4. Wanasinghe D, Aslani F, Ma G. Effect of water to cement ratio, fly ash, and slag on the electromagnetic shielding effectiveness of mortar. Constr Build Mater. 2020;256:119409.
  • 5. Sankaran S, Deshmukh K, Ahamed MB, Khadheer Pasha SK. Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: a review. Compos Part A Appl Sci Manuf. 2018;114:49-71.
  • 6. Xu S, Shen Y, Li Q, Liu X. Hybrid effects of polyvinyl alcohol (PVA) and basalt fibers on microwave absorption of cement composites with fly ash. J Am Ceram Soc. 2021;104(12):6345-63.
  • 7. Shen Y, Li Q, Xu S, Liu X. Electromagnetic wave absorption of multifunctional cementitious composites incorporating polyvinyl alcohol (PVA) fibers and fly ash: Effects of microstructure and hydration. Cem Concr Res. 2021;143:106389.
  • 8. Koppel T, Shishkin A, Haldre H, Toropovs N, Vilcane I, Tint P. Reflection and transmission properties of common construction materials at 2.4 GHz frequency. Energy Procedia. 2017;113:158-65.
  • 9. Georget F, Wilson W, Scrivener KL. edxia: Microstructure characterisation from quantifed SEM-EDS hypermaps. Cem Concr Res. 2021;141:106327.
  • 10. Hu C, Li Z. Micromechanical investigation of Portland cement paste. Constr Build Mater. 2014;71:44-52.
  • 11. Xie S, Ji Z, et al. Recent progress in electromagnetic wave absorption building materials. J Build Eng. 2020;27:100963.
  • 12. Yang F, Liu X, Wang P, Wang S, Robinson I, Chen B. Investigation of spatial nano-structure development of the hardened C3S pastes by serial block-face SEM. Mater Charact. 2021;174:110973.
  • 13. Scrivener K, Ouzia A, Juilland P, Kunhi Mohamed A. Advances in understanding cement hydration mechanisms. Cem Concr Res. 2019;124:105823.
  • 14. Andrade Neto JS, Rodríguez ED, Monteiro PJM, De la Torre AG, Kirchheim AP. Hydration of C3S and Al-doped C3S in the presence of gypsum. Cem Concr Res. 2022;152:106686.
  • 15. Chen Y, Qian C, Zhou H. Characterization Methods for the Effect of Microbial Mineralization on the Microstructure of Hardened C3S Paste. Adv Mater Sci Eng. 2020;2020:1-9.
  • 16. Sowoidnich T, Bellmann F, Damidot D, Ludwig HM. New insights into tricalcium silicate hydration in paste. J Am Ceram Soc. 2018;102:2965-76.
  • 17. Kjellsen KO, Justnes H. Revisiting the microstructure of hydrated tricalcium silicate-a comparison to Portland cement. Cem Concr Compos. 2004;26(8):947-56.
  • 18. Maruyama I, Ohkubo T, Haji T, Kurihara R. Dynamic microstructural evolution of hardened cement paste during first drying monitored by 1H NMR relaxometry. Cem Concr Res. 2019;122:107-17.
  • 19. Frech-Baronet J, Sorelli L, Charron JP. New evidences on the effect of the internal relative humidity on the creep and relaxation behaviour of a cement paste by micro-indentation techniques. Cem Concr Res. 2017;91:39-51.
  • 20. Dervos JAMCT, Skafdas PD, Athanassopoulou MD, Vassiliou P. Effect of Water on Permittivity of Nanodielectrics Exposed to the Atmosphere. IEEE (Inst Electr Electron Eng) Trans Biomed Eng. 2009;16:1558-65.
  • 21. Samouh H, Rozière E, Loukili A. Experimental and numerical study of the relative humidity effect on drying shrinkage and cracking of self-consolidating concrete. Cem Concr Res. 2019;115:519-29.
  • 22. Wyrzykowski M, Lura P. Effect of relative humidity decrease due to self-desiccation on the hydration kinetics of cement. Cem Concr Res. 2016;85:75-81.
  • 23. Wilde K, Wutke M, Lejzerowicz A, Jackiewicz-Rek W, Garbacz A, Niedostatkiewicz M. Influence of variability of water content in different states on electromagnetic waves parameters affecting accuracy of GPR measurements of asphalt and concrete pavements. MATEC Web of Conf. 2019;262:06012.
  • 24. Cosenza P, Camerlynck C, Tabbagh A. Differential effective medium schemes for investigating the relationship between high-frequency relative dielectric permittivity and water content of soils. Water Resour Res. 2003. https://doi.org/10.1029/2002WR001774.
  • 25. Kwon S-J, Feng MQ, Park SS. Characterization of electromagnetic properties for durability performance and saturation in hardened cement mortar. NDT and E Int. 2010;43(2):86-95.
  • 26. Sihvola AH. Dielectric properties of heterogeneous media, chapter 3 polarizability modeling of heterogenous media. Elsevier; 1992.
  • 27. Guihard V, Patapy C, Sanahuja J, Balayssac J-P, Taillade F, Steck B. Effective medium theories in electromagnetism for the prediction of water content in cement pastes. IJES. 2020;150:103273.
  • 28. Maruyama I, Nishioka Y, Igarashi G, Matsui K. Microstructural and bulk property changes in hardened cement paste during the first drying process. Cem Concr Res. 2014;58:20-34.
  • 29. Gómez-Zamorano LY, Escalante-García JI. Effect of curing temperature on the nonevaporable water in portland cement blended with geothermal silica waste. Cem Concr Compos. 2010;32(8):603-10.
  • 30. Saini P, Aror M. Microwave absorption and EMI shielding behavior of nanocomposites based on intrinsically conducting polymers, graphene and carbon nanotubes. New Poly Spec Appl. 2012;3:73-112.
  • 31. Khushnood RA, Ahmad S, Savi P, Tulliani J-M, Giorcelli M, Ferro GA. Improvement in electromagnetic interference shielding effectiveness of cement composites using carbonaceous nano/micro inerts. Constr Build Mater. 2015;85:208-16.
  • 32. Prasad R, Mahmoud AE-R, Parashar SKS. Enhancement of electromagnetic shielding and piezoelectric properties of White Portland cement by hydration time. Constr Build Mater. 2019;204:20-7.
  • 33. Guenego L, Rivet F, Ferre G, Walzik A, Souhayl A, Karbab A. A low-cost IoT-based device to measure exposure to sub-6GHz 5G waves. 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS) 2021. p. 1-4.
  • 34. T. Y. Thomas Basikolo, and Masanori Sakurai. Electromagnetic Field Exposure Evaluation for 5G in Millimeter Wave Frequency Band. IEEE (Inst Electr Electron Eng) Trans Biomed Eng. 2019.
  • 35. Thors B, Colombi D, Ying Z, Bolin T, Tornevik C. Exposure to RF EMF From Array Antennas in 5G Mobile Communication Equipment. IEEE Access. 2016;4:7469-78.
  • 36. Granados C, Rojas H, Santamaria F. Evaluación del Apantallamiento electromagnético del concreto. Revista EIA. 2020;17(34):1-12.
  • 37. Paul D Tennis HMJ. A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes. Cem Concr Res. 2000;30:855-63.
  • 38. Silva FGS, Fiuza Junior RA, da Silva JS, de Brito CMSR, Andrade HMC, Gonçalves JP. Consumption of calcium hydroxide and formation of C-S-H in cement pastes. J Therm Anal Calorim. 2013;116(1):287-93.
  • 39. Xiang Gao YW, Huang Wei. Effect of individual phases on multiscale modeling mechanical properties of hardened cement paste. Constr Build Mater. 2017;153:25-35.
  • 40. Soin AV, Catalan LJJ, Kinrade SD. A combined QXRD/TG method to quantify the phase composition of hydrated Portland cements. Cem Concr Res. 2013;48:17-24.
  • 41. Li Y, Liu Y, Li Y, Li Y, Wang R. Evaluation of concrete creep properties based on indentation test and multiscale homogenization method. Cem Concr Compos. 2021. https://doi.org/10.1016/j.cemconcomp.2021.104135.
  • 42. Scrivener KL. Backscattered electron imaging of cementitious microstructures: understanding and quantifcation. Cem Concr Compos. 2004;26(8):935-45.
  • 43. MacLeod AJN, Collins FG, Duan W, Gates WP. Quantitative microstructural characterisation of Portland cement-carbon nanotube composites using electron and x-ray microscopy. Cem Concr Res. 2019. https://doi.org/10.1016/j.cemconres.2019.05.012.
  • 44. Vandamme M, Ulm F-J, Fonollosa P. Nanogranular packing of C-S-H at substochiometric conditions. Cem Concr Res. 2010;40(1):14-26.
  • 45. Suwanmaneechot P, Aili A, Maruyama I. Creep behavior of C-S-H under different drying relative humidities: Interpretation of microindentation tests and sorption measurements by multi-scale analysis. Cem Concr Res. 2020. https://doi.org/10.1016/j.cemconres.2020.106036.
  • 46. Jennings HM. Refnements to colloid model of C-S-H in cement: CM-II. Cem Concr Res. 2008;38(3):275-89.
  • 47. A. Bazzoni. Study of early hydration mechanisms of cement by means of electron microscopy. 2014.
  • 48. Wanyu Zhao JD, Biao Zhao XG, Shao Gang, Fan Bingbing, Bai Zhongyi, Zhang Rui. Yolk-Shell Ni@SnO2 composites with a designable interspace to improve the electromagnetic wave absorption properties. ACS Appl Mater Inter. 2016;8:28917-25.
  • 49. Wang Z, Zhang T, Zhou L. Investigation on electromagnetic and microwave absorption properties of copper slag-filled cement mortar. Cem Concr Compos. 2016;74:174-81.
  • 50. Nicolson AM. Measurement of the Intrinsic Properties of Materials by Time-Domain Techniques. IEEE Transact Inst Meas. 1970. https://doi.org/10.1109/TIM.1970.4313932.
  • 51. Baoyi L, Yuping D, Shunhua L. The electromagnetic characteristics of fly ash and absorbing properties of cement-based composites using fly ash as cement replacement. Constr Build Mater. 2012;27(1):184-8.
  • 52. Sun X, He J, et al. Laminated magnetic graphene with enhanced electromagnetic wave absorption properties. J Mater Chem C. 2013;1(4):765-77.
  • 53. Kong COAJA. Analytical approximations in multiple scattering of electromagnetic waves by aligned dielectric spheroids. OSAJ. 2002;19(6):1145-56.
  • 54. Guihard FTV, Balayssac JP, Steck B, Sanahuja J, Deby F. Prediction of cement-based materials’ water content with the use of electromagnetic homogenisation schemes. Prog Electromag Res Symp. 2018;2018:164-8.
  • 55. Jennings HM. A model for the microstructure of calcium silicate hydrate in cement paste. Cem Concr Res. 2000;30:101-16.
  • 56. Metha PJMMPK. Concrete Microstructure Properties and Materials. London: McGraw-Hill; 2006.
  • 57. Xie S, Ji Z, Li B, Zhu L, Wang J. Electromagnetic wave absorption properties of helical carbon fibers and expanded glass beads filled cement-based composites. Compos Part A Appl Sci Manuf. 2018;114:360-7.
  • 58. Singh AK, Shishkin A, Koppel T, Gupta N. A review of porous lightweight composite materials for electromagnetic interference shielding. Compos Part B-Eng. 2018;149:188-97.
  • 59. Kolokolova L. Scattering by inhomogeneous particles: microwave analog experiments and comparison to effective medium theories. J Quant Spectros Radiat Transfer. 2001;70:611-25.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-44a4521e-ceb2-46b0-87fa-c50e5582474f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.