PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Coordination strategy for digital frequency relays and energy storage in a low-inertia microgrid

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recently, dynamic frequency stability problems have started to arise in microgrid systems with the increasing utilization of low inertia and intermittent renewable energy sources. This leads to limiting the maximum penetration of renewable sources in microgrids. In order to solve this problem and increase the penetration of renewable sources, the dynamic frequency controller of the microgrid should be enhanced. Therefore, this paper will provide virtual inertia response of superconducting magnetic energy storage coordinated with the load frequency control depending on a new optimal proportional-integral-derivative controller-based advanced swarm intelligence technique, named Moth Swarm Algorithm (MSA). Moreover, the proposed inertia control strategy is coordinated with digital frequency relay to enhance dynamic frequency stability and maintain microgrid dynamic security at high penetration levels of renewable sources and radical load change. To attest the superiority of the proposed technique, it has been examined using MATLAB/SIMULINK, considering different contingency cases and varying the inertia level of the studied microgrid. The results stated that the proposed coordination can effectively regulate microgrid frequency and maintain dynamic stability and security.
Rocznik
Strony
254--263
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
  • Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt
  • Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan 81542, Egypt
  • Department of Electric Power Engineering, Budapest University of Technology and Economics, 1111 Budapest, Hungary
Bibliografia
  • [1] Hassan Bevrani, Masayuki Watanabe, and Yasunori Mitani, editors. Power System Monitoring and Control. John Wiley & Sons Inc., may 2014.
  • [2] Thomas Ackermann, editor. Wind Power in Power Systems. John Wiley & Sons Ltd, jan 2005.
  • [3] Petros Aristidou, Gustavo Valverde, and Thierry Van Cutsem. Contribution of Distribution Network Control to Voltage Stability: A Case Study. IEEE Transactions on Smart Grid, 8(1):106–116, jan 2017.
  • [4] Jingjing Zhao, Xue Lyu, Yang Fu, Xiaoguang Hu, and Fangxing Li. Coordinated Microgrid Frequency Regulation Based on DFIG Variable Coefficient Using Virtual Inertia and Primary Frequency Control. IEEE Transactions on Energy Conversion, 31(3):833–845, sep 2016.
  • [5] Salvatore D’Arco, Jon Are Suul, and Olav B. Fosso. Small-signal modeling and parametric sensitivity of a virtual synchronous machine in islanded operation. International Journal of Electrical Power & Energy Systems, 72:3–15, nov 2015.
  • [6] Ujjwol Tamrakar, Dipesh Shrestha, Manisha Maharjan, Bishnu Bhattarai, Timothy Hansen, and Reinaldo Tonkoski. Virtual Inertia: Current Trends and Future Directions. Applied Sciences, 7(7):654, jun 2017.
  • [7] Jia Liu, Yushi Miura, and Toshifumi Ise. Comparison of Dynamic Characteristics Between Virtual Synchronous Generator and Droop Control in Inverter-Based Distributed Generators. IEEE Transactions on Power Electronics, 31(5):3600–3611, may 2016.
  • [8] Thongchart Kerdphol, Fathin Rahman, Yasunori Mitani, Komsan Hongesombut, and Sinan Küfeoglu. Virtual Inertia Control-Based ˘ Model Predictive Control for Microgrid Frequency Stabilization Considering High Renewable Energy Integration. Sustainability, 9(5):773, may 2017.
  • [9] Ruifeng Yan and Tapan Kumar Saha. Frequency response estimation method for high wind penetration considering wind turbine frequency support functions. IET Renewable Power Generation, 9(7):775–782, sep 2015.
  • [10] Konstantina Mentesidi, Raquel Garde, Monica Aguado, and Evangelos Rikos. Implementation of a fuzzy logic controller for virtual inertia emulation. In 2015 International Symposium on Smart Electric Distribution Systems and Technologies (EDST). IEEE, sep 2015.
  • [11] Yalong Hu, Wei Wei, Yonggang Peng, and Jinyong Lei. Fuzzy virtual inertia control for virtual synchronous generator. In 2016 35th Chinese Control Conference (CCC). IEEE, jul 2016.
  • [12] Miguel A. Torres L., Luiz A. C. Lopes, Luis A. Moran T., and Jose R. Espinoza C. Self-Tuning Virtual Synchronous Machine: A Control Strategy for Energy Storage Systems to Support Dynamic Frequency Control. IEEE Transactions on Energy Conversion, 29(4):833–840, dec 2014.
  • [13] Anamika Yadav Bokka Krishna Chaitanya, Atul Kumar Soni. Communication Assisted Fuzzy based Adaptive Protective Relaying Scheme for Microgrid. Journal of Power Technologies, 98, 2018.
  • [14] Hassan Bevrani. Robust PI-Based Frequency Control. In Robust Power System Frequency Control, pages 71–104. Springer International Publishing, 2014.
  • [15] Sergio Vazquez, Srdjan M. Lukic, Eduardo Galvan, Leopoldo G. Franquelo, and Juan M. Carrasco. Energy Storage Systems for Transport and Grid Applications. IEEE Transactions on Industrial Electronics, 57(12):3881–3895, dec 2010.
  • [16] Andreas Poullikkas Pavlos Nikolaidis. A comparative review of electrical energy storage systems for better sustainability. Journal of Power Technologies, 97 No 3, 2017.
  • [17] Wei Li and Geza Joos. Comparison of Energy Storage System Technologies and Configurations in a Wind Farm. In 2007 IEEE Power Electronics Specialists Conference. IEEE, 2007.
  • [18] Abraham Ellis, David Schoenwald, Jon Hawkins, Steve Willard, and Brian Arellano. PV output smoothing with energy storage. In 2012 38th IEEE Photovoltaic Specialists Conference. IEEE, jun 2012.
  • [19] Ujjwol Tamrakar, David Galipeau, Reinaldo Tonkoski, and Indraman Tamrakar. Improving transient stability of photovoltaic-hydro microgrids using virtual synchronous machines. In 2015 IEEE Eindhoven PowerTech. IEEE, jun 2015.
  • [20] Ming Ding and Jie Wu. A Novel Control Strategy of Hybrid Energy Storage System for Wind Power Smoothing. Electric Power Components and Systems, 45(12):1265–1274, jul 2017.
  • [21] Jie Dang, John Seuss, Luv Suneja, and Ronald G. Harley. SoC Feedback Control for Wind and ESS Hybrid Power System Frequency Regulation. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2(1):79–86, mar 2014.
  • [22] Jun Yeong Yun, Garam Yu, Kyung Soo Kook, Do Hwan Rho, and Byung Hoon Chang. SOC-based Control Strategy of Battery Energy Storage System for Power System Frequency Regulation. The Transactions of the Korean Institute of Electrical Engineers, 63 No 5, 2014. Accessed on Mon, September 23, 2019.
  • [23] Marcelo G. Molina, Pedro E. Mercado, and Edson H. Watanabe. Static synchronous compensator with superconducting magnetic energy storage for high power utility applications. Energy Conversion and Management, 48(8):2316–2331, aug 2007.
  • [24] T. Kinjo, T. Senjyu, N. Urasaki, and H. Fujita. Terminal-voltage and output-power regulation of wind-turbine generator by series and parallel compensation using SMES. IEE Proceedings - Generation Transmission and Distribution, 153(3):276, 2006.
  • [25] Praghnesh Bhatt, S.P. Ghoshal, and Ranjit Roy. Coordinated control of TCPS and SMES for frequency regulation of interconnected restructured power systems with dynamic participation from DFIG based wind farm. Renewable Energy, 40(1):40–50, apr 2012.
  • [26] M. Abdel-Akher Sayed M. Said, Mohamed M. Aly. Application of Superconducting Magnetic Energy Storage (SMES) to Improve Transient Stability of Multi-Machine System with Wind Power Penetration. In 16th International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 2014, pp. 1-6., 2014.
  • [27] Mohamed M. Aly, Mamdouh Abdel-Akher, Sayed M. Said, and Tomonobu Senjyu. A developed control strategy for mitigating wind power generation transients using superconducting magnetic energy storage with reactive power support. International Journal of Electrical Power & Energy Systems, 83:485–494, dec 2016.
  • [28] Emad A. Mohamed, E. Gouda, and Yasunori Mitani. Impact of SMES integration on the digital frequency relay operation considering High PV/Wind penetration in micro-grid. Energy Procedia, 157:1292–1304, jan 2019.
  • [29] J.A. Laghari, H. Mokhlis, A.H.A. Bakar, and Hasmaini Mohamad. Application of computational intelligence techniques for load shedding in power systems: A review. Energy Conversion and Management, 75:130–140, nov 2013.
  • [30] Hamdy Ahmed Ashour Ayatte Ibrahim Atteya, Amani Mohamed El Zonkoly. Adaptive protection scheme for optimally coordinated relay setting using modified PSO algorithm. Journal of Power Technologies, 97 No 5, pp. 463–469., 2017.
  • [31] Naowarat Tephiruk, Komsan Hongesombut, Yuthasak Urathamakul, Sirivat Poonvasin, and Sanee Tangsatit. Modeling of rate of change of under frequency relay for microgrid protection. In 2017 International Electrical Engineering Congress (iEECON). IEEE, mar 2017.
  • [32] W. Freitas, W. Xu, C.M. Affonso, and Z. Huang. Comparative Analysis Between ROCOF and Vector Surge Relays for Distributed Generation Applications. IEEE Transactions on Power Delivery, 20(2):1315–1324, apr 2005.
  • [33] J.C.M. Vieira, W. Freitas, W. Xu, and A. Morelato. Efficient Coordination of ROCOF and Frequency Relays for Distributed Generation Protection by Using the Application Region. IEEE Transactions on Power Delivery, 21(4):1878–1884, oct 2006.
  • [34] Gaber Magdy, Emad A. Mohamed, G. Shabib, Adel A. Elbaset, and Yasunori Mitani. SMES based a new PID controller for frequency stability of a real hybrid power system considering high wind power penetration. IET Renewable Power Generation, 12(11):1304–1313, aug 2018.
  • [35] Shailendra Singh, Rohit Kumar Verma, Ashish Kumar Shakya, and Satyendra Pratap Singh. Frequency Regulation of Micro-grid Connected Hybrid Power System with SMES. Technology and Economics of Smart Grids and Sustainable Energy, 2(1), jul 2017.
  • [36] Emad Mohamed Younis, Mohamed Al-Attar, Thongchart Kerdphol, and Yasunori Mitani. Optimization of Reactive Compensation in Distribution Networks Based on Moth Swarm Intelligence for Multi-Load Levels. International Review of Electrical Engineering (IREE), 12(4):342, aug 2017.
  • [37] Emad A. Mohamed, Gaber Magdy, Gaber Shabib, Adel A. Elbaset, and Yasunori Mitani. Digital coordination strategy of protection and frequency stability for an islanded microgrid. IET Generation Transmission & Distribution, 12(15):3637–3646, aug 2018.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-44a1590b-ccda-47f9-9f57-66b9558f0878
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.