PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Using quasi-experimental designs for causal effects

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This paper discusses the concept of identifying the causal effects using quasiexperimental methods and applies this method to investigate the impact of high license fees on the quality of mobile Internet in Poland. Design/methodology/approach: Quasi-experiment design, especially the difference-indifferences method and the interrupted time series design were used to examine the causal effects of spectrum fees in Poland. Data on the quality of mobile Internet in Poland and around the world published by Akamai and data provided by Ookla® under the agreement1 were used for analysis. Findings: The study did not confirm the impact of high spectrum fees on the quality of the Internet in Poland. Practical implications: The results obtained can help policymakers in Poland and other countries in making decisions on spectrum management. Originality/value: This is the first paper using the quasi-experimental method to examine the effects of the 4G auction in Poland.
Rocznik
Tom
Strony
217--232
Opis fizyczny
Bibliogr. 26 poz.
Bibliografia
  • 1. Angrist, J.D., Pischke, J.S. (2009). Mostly Harmless Econometrics: An Empiricist’s Companion. Princeton, NJ: Princeton University Press.
  • 2. Bauer, J.M. (2003). Impact of license fees on the prices of mobile voice service. Telecommunications Policy, Vol. 27, Iss. 5-6, pp. 417-434, doi: 10.1016/S0308-5961(03)00009-0.
  • 3. Bondonio, D. (2021). Cross-Regional Sequential Difference in Difference (CR-SEQDD): An Empirical Approach for Evaluating EU Thematic-ObjectiveInterventions with Regional Data Aggregated at the National Level. Publications Office of the European Union. Retrieved from: https://ec.europa.eu/regional_policy/en/information/publications/evaluations-guidance-documents/2021/cross-regional-sequential-difference-in-difference-cr-seqdd, 15.11.2023.
  • 4. Buchheit, S., Feltovich, N. (2011). Experimental Evidence of a Sunk-Cost Paradox: A study of Pricing Behaivor in Bertrand—Edgeworth Duopoly. International Economic Review, Vol. 52, Iss. 2, pp. 317-347, doi: 10.1111/j.1468-2354.2011.00630.x.
  • 5. Card, D., Krueger, A.B. (1994). Wages and employment: A case study of the fast-food industry in New Jersey and Pennsylvania. American Economic Review, Vol. 84, Iss.4, pp. 772-793, 1.12.2023.
  • 6. Coleman, R. (2019). Designing experiments for the social sciences: how to plan, create, and execute research using experiments. Thousand Oaks, California: SAGE Publications, Inc.
  • 7. Difference-in-Difference Estimation, Retrieved from: https://www.publichealth.columbia.edu/research/population-health-methods/difference-difference-estimation, 2.11.2023.
  • 8. European Commission (2010). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions A Digital Agenda for Europe (COM/2010/0245). Retrieved from: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=celex%3A52010DC0245, 17.05.2023.
  • 9. Garrison, R.H., Noreen, W.E., Brewer, C.P. (2010). Managerial Accounting. New York: McGraw-Hill. Retrieved from: https://eduguidehome.files.wordpress.com/2019/02/managerial-accounting-garrisonnoreenbrewer-13e.pdf, 15.03.2023.
  • 10. Goodman-Bacon, A. (2021). Difference-in-differences with variation in treatment timing. Journal of Econometrics, Vol. 225, Iss. 2, pp. 254-277. doi: https://doi.org/10.1016/j.jeconom. 2021.03.014.
  • 11. GSMA (2019). The impact of spectrum prices on consumer. Retrieved from: https://www.gsma.com/spectrum/wp-content/uploads/2019/09/Impact-of-spectrum-prices-on-consumers.pdf, 5.04.2023.
  • 12. Imai, K., King, G., Stuart, E.A. (2008). Misunderstandings between experimentalists and observationalists about causal inference. Journal of the Royal Statistical Society: Series A (Statistics in Society), Vol. 171. Iss. 2, pp. 481-502. doi: 10.1111/j.1467-985X.2007.00527.x
  • 13. ITU (2019). ITU Contribution to the Implementation of the WSIS - Outcomes 2019. Retrieved from: https://www.itu.int/en/itu-wsis/Pages/Contribution.aspx. 23.03.2023.
  • 14. Kim, Y, Steiner, P. (2016). Quasi-Experimental Designs for Causal Inference. Educational Psychologist, Vol. 51, Iss. 3-4, pp. 395-405. doi: 10.1080/00461520.2016.1207177.
  • 15. Kuś, A. (2020). Polish experience from first-ever spectrum auction. Telecommunication Policy, Vol. 44, Iss. 7, pp. 1-11. doi: 10.1016/j.telpol.2020.101971.
  • 16. Kuś, A. (2023). Do the high spectrum prices harm consumers? Evidence from Poland. European Research Studies Journal, Vol. XXVI, Iss. 3, pp. 415-437. doi: 10.35808/ersj/3222.
  • 17. Kwerel, E. (2000). Spectrum Auctions Do Not Raise the Price of Wireless Services: Theory and Evidence. Office of Plans and Policy Federal Communications Commission. Retrieved from: https://wireless.fcc.gov/auctions/data/papersAndStudies/SpectrumAuctionsDoNotRaisePrices.pdf, 24.04.2023.
  • 18. Linden, A., Arbor, A. (2015). Conducting Interrupted Time-series Analysis for Single- and Multiple-group Comparisons. The Stata Journal, Vol. 15, Iss. 2, pp. 480-500. doi: 10.1177/1536867X1501500208
  • 19. Meyer, B.D. (1995). Natural and Quasi- Experiments in Economics. Journal of Business & Economic Statistics. Vol. 13, Iss. 2, pp. 151-161. doi: 10.1080/07350015.1995.10524589.
  • 20. Sagan, A. (2011). Przyczynowość w badaniach marketingowych. Zeszyty Naukowe Uniwersytetu Szczecińskiego, Problemy zarządzania, finansów i marketingu, Vol. 38, pp. 273-283. doi: 10.18276/pzfm.2015.38-25.
  • 21. Sagan, A. (2015). Zależności przyczynowe w diagnozie efektów komunikacyjnych. Zeszyty Naukowe UE w Poznaniu, Vol. 208, pp. 73-84.
  • 22. Shadish, W.R., Cook, T.D., Campbell, D.T. (2002). Experimental and Quasi-Experimental Designs for Generalized Causal Inference. Boston: Houghton Mifflin Company.
  • 23. Somers, M., Zhu, P., Jacob, R., Bloom, H. (2013). The validity and precision of the comparative interrupted time series design and the difference-in-difference design in educational evaluation. MDRC Working paper on research methodology. New York, NY: MDRC. Retrieved from: https://www.mdrc.org/sites/default/files/validity_precision_ comparative_interrupted_time_series_design.pdf, 27.11.2023.
  • 24. Turner, S.L., Karahalios, A., Forbes, A.B., Taljaard, M., Grimshaw, J.M., McKenzie, J.E. (2021). Comparison of six statistical methods for interrupted time series studies: empirical evaluation of 190 published series. BMC Medical Research Methodology, Vol. 21, Iss. 1. doi: 10.1186/s12874-021-01306-w.
  • 25. White, H., Sabarwal, S. (2014). Quasi-Experimental Design and Methods, Methodological Briefs: Impact Evaluation, 8. Florence UNICEF Office of Research. Retrieved from: https://www.unicef-irc.org/KM/IE/img/downloads/Quasi-Experimental_Design_and_ Methods_ENG.pdf, 22.09.2023.
  • 26. Wing, C., Simon, K., Bello-Gomez, R.A. (2018). Designing Difference in Difference Studies: Best Practices for Public Health Policy Research. Annual Review of Public Health, Vol. 39, Iss. 1, pp. 453-69. doi: 10.1146/annurev-publhealth-040617-013507.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-44a0930b-5d14-4049-b485-0c47c9658b74
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.