Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Possibilities of performing numerical simulation of arc welding
Języki publikacji
Abstrakty
W artykule przedstawiono poszczególne etapy powstawania numerycznej symulacji procesu spawania. W pracy wykorzystano ogólnodostępne narzędzia pozwalające na sprawną realizację modelowania przestrzennego, tworzenia siatek elementów skończonych oraz wykonania obliczeń w konwencji elementów skończonych w warunkach termodynamicznie nieustalonych. Wykazano, że mimo złożonego procesu modelowania i obliczeń, zastosowane oprogramowanie w wielu momentach ułatwia inżynierowi spawalnikowi wirtualną diagnostykę procesu spawania.
The article presents the individual stages of numerical simulation of the welding process. The work uses commonly available tools that allow for efficient implementation of 3D modeling, creation of finite element meshes and calculations in the convention of finite elements method in thermodynamically transient conditions. It has been shown that despite the complex process of modeling and calculations, the software used at many times simplifies the welding engineer's virtual diagnosis of the welding process.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
3--11
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
autor
- Zachodniopomorski Uniwersytet Technologiczny w Szczecinie
autor
- Zachodniopomorski Uniwersytet Technologiczny w Szczecinie
autor
- Zachodniopomorski Uniwersytet Technologiczny w Szczecinie
Bibliografia
- [1] M. S. Węglowski and M. Zeman, “Prevention of cold cracking in ultra-high strength steel Weldox 1300,” Arch. Civ. Mech. Eng., vol. 14, no. 3, 2014.
- [2] M. Fiedler, R. Rauch, R. Schnitzer, W. Ernst, G. Simader, and J. Wagner, “The alform® welding system The world’s first system for high-strength welded structures,” IIW International Conference High-Strength Materials - Challenges and Applications, Helsinki, Finland, pp. 1–5, 2015.
- [3] J. Górka, “Weldability of thermomechanically treated steels having a high yield point,” Arch. Metall. Mater., vol. 60, no. 1, pp. 469–475, 2015.
- [4] D. Fydrych, J. Łabanowski, and G. Rogalski, “Weldability of high strength steels in wet welding conditions,” Polish Marit. Res., vol. 20, no. 2, pp. 67–73, 2013.
- [5] S. Liu, Y. Li, F. Liu, H. Zhang, and H. Ding, “Effects of relative positioning of energy sources on weld integrity for hybrid laser arc welding,” Opt. Lasers Eng., vol. 81, pp. 87–96, 2016.
- [6] M. Chen, J. Xu, L. Xin, Z. Zhao, and F. Wu, “Comparative study on interactions between laser and arc plasma during laser-GTA welding and laser-GMA welding,” Opt. Lasers Eng., vol. 85, pp. 1–8, 2016.
- [7] Z. M. Liu, S. L. Cui, Z. Luo, C. Z. Zhang, Z. M. Wang, and Y. C. Zhang, “Plasma arc welding: Process variants and its recent developments of sensing, controlling and modeling,” J. Manuf. Process., vol. 23, pp. 315–327, 2016.
- [8] M. Banasik and M. Urbańczyk, “Spawanie metodą hybrydową laser + MAG złączy teowych,” Biul. Inst. Spaw., vol. 61, no. 2, pp. 25–30, 2017.
- [9] J. Nowacki and A. Sajek, “Verification of Properties of Joints Made of Advances High Strength Steels in the Conditions of the Complex Thermal Cycles of the HPAW Process,” Biul. Inst. Spaw., vol. 62, no. 5, pp. 167–173, 2018.
- [10] I. A. Bataev et al., “Towards better understanding of explosive welding by combination of numerical simulation and experimental study,” Mater. Des., vol. 169, no. March, pp. 1–16, 2019.
- [11] J. Cheon, D. V. Kiran, and S.-J. Na, “CFD based visualization of the finger shaped evolution in the gas metal arc welding process,” Int. J. Heat Mass Transf., vol. 97, pp. 1–14, 2016.
- [12] F. Kong, J. Ma, and R. Kovacevic, “Numerical and experimental study of thermally induced residual stress in the hybrid laser-GMA welding process,” J. Mater. Process. Technol., vol. 211, no. 6, pp. 1102–1111, 2011.
- [13] W. Maurer, W. Ernst, R. Rauch, S. Kapl, R. Vallant, and N. Enzinger, “Numerical simulation on the effect of HAZ softening on static strength of HSLA steel welds,” in Mathematic modelling of weld phenomena 10, 2013, no. January, pp. 669–690.
- [14] S. Neubert, A. Pittner, and M. Rethmeier, “Influence of nonuniform martensitic transformation on residual stresses and distortion of GMA-welding,” J. Constr. Steel Res., vol. 128, pp. 193–200, 2017.
- [15] T. Kik and J. Górka, “Numerical Simulations of Laser and Hybrid S700MC T-Joint Welding,” Materials (Basel)., vol. 12, no. 3, p. 516, 2019.
- [16] J. Goldak, M. Asadi, and R. G. Alena, “Why power per unit length of weld does not characterize a weld?,” Comput. Mater. Sci., vol. 48, no. 2, pp. 390–401, 2010.
- [17] G. Stix and B. Buchmayr, “Investigation of residual stresses and distortions produced in tubular,” IIW International Conference High-Strength Materials - Challenges and Applications, Helsinki, Finland, pp. 1–5, 2015.
- [18] A. Sajek and J. Nowacki, “Comparative evaluation of various experimental and numerical simulation methods for determination of t 8/5 cooling times in HPAW process weldments,” Arch. Civ. Mech. Eng., vol. 18, no. 2, pp. 583–591, 2018.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-44986f21-581d-4903-b1a9-04ec013e559b